Skip to main content

Advertisement

Log in

Characterisation of a horizontal axis wind turbine’s tip and root vortices

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex filaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjæreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind configurations. Qualitative flow visualisations using hydrogen bubble, particle streakline and planar laser-induced fluorescence techniques were combined with quantitative data measurements taken using planar particle image velocimetry. Vortices were identified using velocity gradient tensor invariants. Parameters that describe the helical vortex wake, such as the helicoidal pitch, and vortex circulation, were determined for three tip speed ratios. Particular attention is given here to the root vortex, which has been investigated minimally to date. Signatures of the coherent tip vortices are seen throughout the measurement domain; however, the signature of the root vortex is only evident much closer to the rotor plane, irrespective of the turbine configuration. It is postulated that the root vortex diffuses rapidly due to the effects of the turbine support geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alam MM, Zhou Y, Yang H, Guo H, Mi J (2010) The ultra-low Reynolds number airfoil wake. Exp Fluids 48:81–103

    Article  Google Scholar 

  • Ameur K, Masson C, Eecen P (2011) 2D and 3D numerical simulation of the wind-rotor/nacelle interaction in an atmospheric boundary layer. J Wind Eng Ind Aerodyn. doi:10.1016/j.jweia.2011.06.002

  • Bandyopadhyay P, Stead D, Ash R (1991) The organized nature of a turbulent trailing vortex. AIAA J 29(10):1627–1633

    Article  Google Scholar 

  • Barthelmie R, Frandsen S, Rathmann O, Hansen K, Politis E, Prospathopoulos J, Schepers J, Rados K, Cabezón D, Schlez W, Neubert A, Heath M (2011) Flow and wakes in large wind farms: final report for upwind wp8. Tech. Rep. Risø-R-1765(EN), Risø DTU, National Laboratory for Sustainable Energy

  • Beresh S, Henfling J, Spillers R (2010) Meanser of a fin trailing vortex and the origin of its turbulence. Exp Fluids 49(3):599–611

    Article  Google Scholar 

  • Blevins R (1984) Applied fluid dynamics handbook. Van Nostrand Reinhold company, New York

    Google Scholar 

  • Carmer C, Konrath R, Schroder A, Monnier J-C (2008) Identification of vortex pairs in aircraft wakes from sectional velocity data. Exp Fluids 44:367–380

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian R (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  MATH  Google Scholar 

  • Chong M, Perry A, Cantwell B (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777

    Article  MathSciNet  Google Scholar 

  • Crespo A, Hernández J, Frandsen S (1999) Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 2:1–24

    Article  Google Scholar 

  • Devenport W, Rife M, Liapis S, Follin G (1996) The structure and development of a wing tip vortex. J Fluid Mech 312:67–106

    Article  MathSciNet  Google Scholar 

  • Dobrev I, Maalouf B, Troldborg N, Massouh F (2008) Investigation of the wind turbine vortex structure. 14th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 07–10 July 2008

  • Ebert P, Wood D (1997) The near wake of a model horizontal-axis wind turbine, part 1. Experimental arrangements and initial results. Renew Energy 12(3):225–243

    Article  Google Scholar 

  • Ebert P, Wood D (1999) The near wake of a model horizontal-axis wind turbine, part 2. General features of the three-dimensional flowfield. Renew Energy 18:513–534

    Article  Google Scholar 

  • Ebert P, Wood D (2001) The near wake of a model horizontal-axis wind turbine, part 3. Properties of the tip and hub vortices. Renew Energy 22:461–472

    Article  Google Scholar 

  • Felli M, Camussi R, Felice FD (2011) Mechanisms of evolution of the propeller wake in the transition and far fields. J Fluid Mech 682:5–53

    Article  MATH  Google Scholar 

  • Fouras A, Soria J (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25:409–430

    Article  Google Scholar 

  • Fouras A, Lo Jacono D, Hourigan K (2008) Target free stereo piv: a novel technique with inherent error estimation and improved accuracy. Exp Fluids 44:317–329

    Article  Google Scholar 

  • Glauert H (1937) The elements of airfoil and airscrew theory. Cambridge University Press, London

    Google Scholar 

  • Grant I, Owens E (1990) Confidence interval estimates in PIV measurements of turbulent flows. Appl Opt 29(10):1400–1402

    Article  Google Scholar 

  • Grant I, Parkin P (2000) A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw. Exp Fluids 28:368–376

    Article  Google Scholar 

  • Gupta B, Loewy R (1974) Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices. AIAA J 12(10):1381–1387

    Article  MATH  Google Scholar 

  • Haans W, van Kuik G, van Bussel G (2008) The inverse vortex wake model: a measurement analysis tool. J Solar Eng 130:1–14

    Google Scholar 

  • Hansen K, Barthelmie R, Jensen L, Sommer A (2012) The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at horns rev wind farm. Wind Energy 15:183–196

    Article  Google Scholar 

  • Hansen M (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan, London

    Google Scholar 

  • Heyes A, Hones R, Smith D (2004) Wandering of wing-tip vortices. In: Proceedings of 12th international symposium on the applications of laser techniques to fluid mechanics. Lisbon, Portugal

  • Horton H (1968) Laminar separation bubbles in two and three-dimensional incompressible flow. PhD, University of London

  • Ivanell S, Sørensen J, Mikkelsen R, Henningson D (2009) Analysis of numerically generated wake structures. Wind Energy 12:63–80

    Article  Google Scholar 

  • Ivanell S, Mikkelsen R, Sørensen J, Henningson D (2010) Stability analysis of the tip vortices of a wind turbine. Wind Energy 13(8):705–715

    Article  Google Scholar 

  • Jacobs E, Sherman A (1937) Airfoil section characteristics as affected by variations of the Reynolds number. Tech. Rep. Report No. 586, National advisory committee for aeronautics

  • Masson C, Smaïli A (2006) Numerical study of turbulent flow around a wind turbine nacelle. Wind Energy 9:281–298

    Article  Google Scholar 

  • Medici D, Alfredsson P (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9:219–236

    Article  Google Scholar 

  • Micallef D, Akay B, Saint T, Ferreira C, van Bussel G (2011) Experimental and numerical study of radial flow and its contribution to wake development of a HAWT. In: Proceedings of the European wind energy association

  • Okulov V, Sørensen J (2007) Stability of helical tip vortices in a rotor far wake. J Fluid Mech 576:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Øye S (1990) Tjæreborg wind turbine (Esbjerg) geometric and operational data. Tech. Rep. AFM-NOTAT VK-184, Department of fluid mechanics, DTH

  • Øye S (1991) Tjæreborg wind turbine (Esbjerg), first dynamic inflow measurement. Tech. Rep. AFM-NOTAT VK-189, Department of fluid mechanics, DTH

  • Raffel M, Willert C, Kompenhans J (eds) (1998) Particle image velocimetry—a practical guide. Springer, Heidelberg, pp 51–58; 182–189

  • Roy C, Leweke T, Thompson M, Hourigan K (2011) Experiments on the elliptic instability in vortex pairs with axial core flow. J Fluid Mech 677:383–416

    Article  MathSciNet  MATH  Google Scholar 

  • Schepers J, Snel H (2007) Model experiments in controlled conditions, final report. Tech. Rep. ECN-E–07-042, Energy research centre of the Netherlands

  • Selig M, Guglielmo J, Broeren A, Giguére P (1995) Summary of low-speed airfoil data, vol 1. SoarTech Publications, Virginia Beach, VA

    Google Scholar 

  • Shen W, Mikkelsen R, Sørensen J (2005) Tip loss corrections for wind turbine computations. Wind Energy 8:457–475

    Article  Google Scholar 

  • Sørensen J (2011) Aerodynamics aspects of wind energy conversion. Annu Rev Fluid Mech 43:427–448

    Article  Google Scholar 

  • Sunada S, Kawachi K (2002) Comparison of wing characteristics at an ultralow Reynolds number. J Aircr 39(2):331–338

    Article  Google Scholar 

  • Vermeer L, Sørensen J, Crespo A (2003) Wind turbine wake aerodynamics. Prog Aerosp Sci 39:467–510

    Article  Google Scholar 

  • Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  • Walther J, Guenot M, Machefaux E, Rasmussen J, Chatelain P, Okulov V, Sørensen J, Bergdof M, Koumoutsakos P (2007) A numerical study of the stability of helical vortices using vortex methods. J Phys Conf Ser 75:012034

    Article  Google Scholar 

  • Whale J (1996) A study of the near wake of a model wind turbine using particle image velocimetry. PhD, The University of Edinburgh

  • Whale J, Helmis C, Papadopolous K, Anderson C, Skyner D (1996) A study of the near wake structure of a wind turbine comparing measurements from laboratory and full scale measurements. Sol Energy 56(6):621–633

    Article  Google Scholar 

  • Whale J, Anderson C, Bareiss R, Wagner S (2000) An experimental and numerical study of the vortex structure in the wake of a wind turbine. J Wind Eng Ind Aerodyn 84:1–21

    Article  Google Scholar 

  • Widnall S (1972) The stability of a helical vortex filament. J Fluid Mech 54(4):641–663

    Article  MATH  Google Scholar 

  • Yoshida S (2006) Performance of downwind turbines in complex terrain. Wind Eng 30(6):487–502

    Article  Google Scholar 

  • Zahle F, Sørensen N (2011) Characterisation of the unsteady flow in the nacelle region of a modern wind turbine. Wind Energy 14:271–283

    Article  Google Scholar 

  • Zhou J, Adrian R, Balachandar S, Kendall T (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sherry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherry, M., Sheridan, J. & Jacono, D.L. Characterisation of a horizontal axis wind turbine’s tip and root vortices. Exp Fluids 54, 1417 (2013). https://doi.org/10.1007/s00348-012-1417-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-012-1417-y

Keywords

Navigation