Skip to main content
Log in

Unsteady characteristics of inlet vortices

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental study of the unsteady characteristics of inlet vortices has been conducted using a high-frame rate digital particle image velocimetry system. The results revealed the formation of a pair of counter-rotating inlet vortices for the no-wind configuration and one single inlet vortex when there was crosswind. In all measurement planes, from near the ground to the inlet, evidence of vortex meandering with quasi-periodicity was found. The vortex meander is dominant in the direction of the crosswind, and its amplitude increases with crosswind velocity. The proper orthogonal decomposition analysis of the instantaneous velocity field suggested that the most energetic mode was a helical displacement wave, corresponding to the first helical mode. Similarities with the meandering of the trailing vortices from wings were noted. The present results also suggest that the unsteady characteristics of the focus of separation formed on the ground might be responsible for the unsteady nature of the inlet vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a M :

Meandering amplitude of inlet vortex (mm)

D i :

Inlet diameter (mm)

D 0 :

Outer diameter of the inlet tube (mm)

E :

Spectral density (dB/Hz)

f :

Frequency (Hz)

H :

Inlet height (mm)

N :

Number of snapshots of the inlet vortex

P :

Probability of instantaneous inlet vortex locations (%)

Q :

The inlet volumetric flow rate (LPM)

r i :

Radius of the instantaneous inlet vortex (mm)

r oi :

Σ r i /N, Conditionally averaged radius of the instantaneous inlet vortex (mm)

r o :

Radius of the time-averaged inlet vortex (mm)

t :

Time (s)

U i :

Inlet velocity (m/s)

U :

Crosswind velocity (m/s)

x :

Coordinate in the direction of the crosswind

x c :

Coordinate of the location of the time-averaged inlet vortex in the direction of the crosswind (mm)

x i :

Coordinate of the location of the instantaneous inlet vortex in the direction of the crosswind (mm)

y :

Coordinate in the direction perpendicular to the crosswind

y c :

Coordinate of the location of the time-averaged inlet vortex in the direction perpendicular to the crosswind (mm)

y i :

Coordinate of the location of the instantaneous inlet vortex in the direction perpendicular to the crosswind (mm)

z :

Vertical coordinate

Γ:

Circulation (m2/s)

ω y :

Vorticity in the vertical plane perpendicular to the axis of the inlet model (s−1)

ω z :

Vorticity in the horizontal planes parallel to the ground (s−1)

References

  • Antkowiak A, Brancher P (2004) Transient energy growth for the Lamb-Oseen vortex. Phys Fluid 16(1):L1–L4

    Article  MathSciNet  Google Scholar 

  • Bailey SCC, Tavoularis S (2008) Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence. J Fluid Mech 601:281–315

    Article  MATH  Google Scholar 

  • Bailey SCC, Tavoularis S, Lee BHK (2006) Effects of freestream turbulence on wing-tip vortex formulation and near field. J Aircraft 43(5):1282–1291

    Article  Google Scholar 

  • Baker GR, Barker SJ, Bofah KK, Saffman PG (1974) Laser anemometer measurements of trailing vortices in water. J Fluid Mech 65:325–336

    Article  Google Scholar 

  • Beresh SJ, Henfling JF, Spillers RW (2010) Meander of a fin trailing vortex and the origin of its turbulence. Exp Fluids 49(3):599–611

    Article  Google Scholar 

  • Berkooz Z, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Brix S, Neuwerth G, Jacob D (2000) The inlet-vortex system of jet engines operating near the ground. In: 18th applied aerodynamics conference, 14–17 Aug, Denver, CO, AIAA2000–3998

  • Colehour JL, Farquhar BW (1971) Inlet vortex. J Aircraft 8(1):39–43

    Article  Google Scholar 

  • Corsiglia VR, Schwind RG, Chigier NA (1973) Rapid scanning, three-dimensional hot-wire anemometer surveys of wing-tip vortices. J Aircraft 10(12):752–757

    Article  Google Scholar 

  • De Siervi F, Viguier HC, Greitzer EM, Tan CS (1982) Mechanisms of inlet vortex formation. J Fluid Mech 124:173–207

    Article  Google Scholar 

  • Del Pino C, Lopez-Alonso JM, Parras L, Fernandez-Feria R (2011) Dynamics of the wing-tip vortex in the near field of a NACA 0012 airfoil. Aeronaut J 115(1166):229–239

    Google Scholar 

  • Devenport WJ, Rife MC, Liapis SI, Follin GJ (1996) The structure and development of a wing-tip vortex. J Fluid Mech 312:67–106

    Article  MathSciNet  Google Scholar 

  • Fabre D, Sipp D, Jacquin L (2006) Kelvin waves and the singular modes of the Lamb-Oseen vortex. J Fluid Mech 551:235–274

    Article  MathSciNet  MATH  Google Scholar 

  • Funk R, Parekh D, Smith D, Dorris J (2001) Inlet vortex alleviation. In: 19th AIAA applied aerodynamics conference, 11–14 June, Anaheim, CA. AIAA2001–2449

  • Gajewski T (1988) Damping of the inlet vortex in a turbojet engine. J Tech Phys 29(3–4):337–348

    Google Scholar 

  • Green SI, Acosta AJ (1991) Unsteady flow in trailing vortices. J Fluid Mech 227:107–173

    Article  Google Scholar 

  • Gursul I, Xie W (2000) Origin of vortex wandering over delta wings. J Aircraft 37(2):348–350

    Article  Google Scholar 

  • Heiland RW (1992) KLTOOL: a mathematical tool for analyzing spatiotemporal data. Arizona State University, Department of Mathematics, 1992 Dec

  • Hinze JO (1975) Turbulence, vol 2. McGraw Hill, New York

    Google Scholar 

  • Jacquin L, Fabre D, Geffroy P, Coustols E (2001) The properties of a transport aircraft wake in the extended near field: an experimental study. In: 39th AIAA aerospace sciences meeting and exhibit, 8–11 Jan, Reno, NV. AIAA2001–1038

  • Jacquin L, Fabre D, Sipp D, Theofilis V, Vollmers H (2003) Instability and unsteadiness of aircraft wake vortices. Aerosp Sci Technol 7:577–593

    Article  Google Scholar 

  • Johns CJ (2002) The aircraft engine inlet vortex problem. In: AIAA’s aircraft technology, integration, and operations (ATIO) 2002 Technical, 1–3 Oct, Los Angeles, CA. AIAA2002–5894

  • Karlsson A, Fuchs L (2000) Vortex systems and the interaction between an air inlet and the ground. ICAS 2000 Congress, pp 522.1–522.10

  • Klein HJ (1959) US Patent for “Vortex inhibitor for aircraft jet engines”. Douglas Aircraft Co, No. 2,915,262. B64D33/02, filed 1 Dec

  • Leibovich S (1984) Vortex stability and breakdown: survey and extension. AIAA J 22(9):1192–1206

    Article  Google Scholar 

  • Lumley JL (1970) Stochastic tools in turbulence. Applied mathematics and mechanics, vol 12. Academic Press, New York

    Google Scholar 

  • Margaris P, Marles D, Gursul I (2008) Experiments on jet/vortex interaction. Exp Fluids 44:261–278

    Article  Google Scholar 

  • Menke M, Gursul I (1997) Unsteady nature of leading edge vortices. Phys Fluid 9(10):2960–2966

    Article  MathSciNet  MATH  Google Scholar 

  • Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng 104(2):250–260

    Article  Google Scholar 

  • Murphy JP, MacManus DG (2011a) Ground vortex aerodynamics under crosswind conditions. Exp Fluids 50:109–124

    Article  Google Scholar 

  • Murphy JP, MacManus DG (2011b) Inlet ground vortex aerodynamics under headwind conditions. Aerosp Sci Technol 15:207–215

    Article  Google Scholar 

  • Murphy JP, MacManus DG, Sheaf CT (2010) Experimental investigation of intake ground vorticities during takeoff. AIAA J 48(3):688–701

    Article  Google Scholar 

  • Nakayama A, Jones J (1999) Correlation for formation of inlet vortex formation. AIAA J 37(4):508–510

    Article  Google Scholar 

  • Rodert LA, Garrett FB (1955) Ingestion of foreign objects into turbine engines by vortices. TN 3330, February, NACA

  • Roy C, Leweke T (2008) Experiments on vortex meandering. FAR-Wake Technical Report AST4-CT-2005-012238, CNRS-IRPHE, also presented in international workshop on fundamental issues related to aircraft trailing wakes, 27–29 May 2008, Marseille, France

  • Secareanu A, Moroianu D, Karlsson A, Fuchs L (2005) Experimental and numerical study of ground vortex interaction in an air-intake. In: 43rd AIAA aerospace sciences meeting and exhibit, 10–13 Jan, Reno, NV. AIAA2005–1206

  • Shin HW, Cheng WK, Greitzer EM, Tan CS (1986a) Inlet vortex formation due to ambient vorticity intensification. AIAA J 24(4):687–689

    Article  Google Scholar 

  • Shin HW, Greitzer EM, Cheng WK, Tan CS, Shippee CL (1986b) Circulation measurements and vortical structure in an inlet-vortex flow field. J Fluid Mech 162:463–487

    Article  Google Scholar 

  • Shmilovich A, Yadlin Y (2006) Engine ground vortex control. In: 24th applied aerodynamics conference, 5–8 June, San Francisco, CA. AIAA2006–3006

  • Trapp LG, Girardi RM (2010) Crosswind effects on engine inlet: the inlet vortex. J Aircraft 47(2):577–590

    Article  Google Scholar 

  • Tsai C-Y, Widnall SE (1980) Examination of group-velocity criterion for breakdown of vortex flow in a divergent duct. Phys Fluid 23(5):864–870

    Article  MathSciNet  Google Scholar 

  • Williams NM (2009) Active flow control on a nonslender delta wing. PhD Thesis, Mechanical Engineering (University of Bath)

Download references

Acknowledgments

The authors would like to thank the RCUK Academic Fellowship and also the EPSRC Engineering Instrument Pool of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gursul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Gursul, I. Unsteady characteristics of inlet vortices. Exp Fluids 53, 1015–1032 (2012). https://doi.org/10.1007/s00348-012-1340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1340-2

Keywords

Navigation