Skip to main content
Log in

Evaporation of bi-component droplets in a heated, highly turbulent flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This work aims to understand the phenomena that occur in a combustion chamber where multi-component fuel droplets are injected. Many evaporation models exist but the influence of turbulence on spray vaporization is not yet well understood. This study gives a useful database to improve these models. The objective of the work is to measure the dispersion and the evaporation of bi-component (octane/3-pentanone) droplets and the resulting vapor mixing in a well-known, heated, highly turbulent channel flow. The carrier flow shows high turbulence levels, flat profiles for the mean velocity and the velocity fluctuations. The injected droplets have a large variety of behaviors due to the large polydispersion and to the turbulence. The evolution of 3-pentanone liquid concentration, mass flux, and droplet clusters are described. Mean concentration, fluctuations of concentration, and mixing of the vapor phase are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abramzon B, Sirignano W (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618

    Article  Google Scholar 

  • Albrecht HE, Borys M, Damaschke N, Tropea C (2003) Laser doppler and phase doppler measurement techniques. Springer, New York

    Google Scholar 

  • Bédat B, Cheng RK (1995) Experimental study of premixed flames in intense isotropic turbulence. Combust Flame 100(3):485–494

    Article  Google Scholar 

  • Birouk M, Chauveau C, Sarh B, Quilgars A, Gokalp I (1996) Turbulence effects on the vaporization of monocomponent single droplets. Combust Sci Technol 113(1):413–428

    Article  Google Scholar 

  • Bodoc V (2011) Multicomponent droplet vaporization. PhD thesis, ISAE

  • Bodoc V, Moreau F, Biscos V, Basile R, Lavergne G (2009) Experimental investigation of evaporating bi-component droplets in a turbulent channel flow. International annual conference on liquid atomization and spray systems, Vail, Colorado, USA

  • Buchhave P, George WK, Lumley J (1979) The measurement of turbulence with the laser-doppler anemometer. Annu Rev Fluid Mech 11:443–503

    Article  Google Scholar 

  • Chiang C, Sirignano W (1993) Axisymmetric calculation of three droplets interactions. Atomization Sprays 3:91–107

    Google Scholar 

  • Cochet M (2007) Evaporation de gouttelettes polydispersées dans un écoulement de canal fortement turbulent. analyse de la formation du mélange diphasique par image de fluorescence. PhD thesis, INPT

  • Cochet M, Bazile R, Ferret B, Cazin S (2009) Evaporation of polydispersed droplets in a highly turbulent channel flow. Exp Fluids 47(3):379–394

    Article  Google Scholar 

  • Erdmann JC, Gellert RI (1976) Particle arrival statistics in laser anemometry of turbulent-flow. Appl Phys Lett 29(7):408–411

    Article  Google Scholar 

  • Harstad KG, Le Clercq PC, Bellan J (2003) Statistical model of multicomponent-fuel drop evaporation for many-drop flow simulations. Aiaa J 41(10):1858–1874

    Article  Google Scholar 

  • Hoesel W, Rodi W (1977) New biasing elimination method for laser-doppler velocimeter counter processing. Rev Sci Instrum 48(7):910–919. doi:10.1063/1.1135131

    Article  Google Scholar 

  • Hubbard G, Denny V, Mills A (1975) Droplet evaporation: Effects of transients and variable properties. Int J Heat Mass Transf 18(9):1003–1008

    Article  Google Scholar 

  • Kapulla R, Najera SB (2006) Operation conditions of a phase doppler anemometer: droplet size measurements with laser beam power, photomultiplier voltage, signal gain and signal-to-noise ratio as parameters. Meas Sci Technol 17:221–227

    Article  Google Scholar 

  • Karpetis A, Gomez A (2000) An experimental study of well-defined turbulent nonpremixed spray flames. Combust Flame 121:1–23

    Google Scholar 

  • Koch J, Hanson R (2003) Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for plif applications. Appl Phys B 76:319–324

    Article  Google Scholar 

  • Marchisio DL, Fox RO (2005) Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci 36(1):43–73

    Article  Google Scholar 

  • McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27:255–265

    Article  Google Scholar 

  • Modica V, Morin C, Guibert P (2007) 3-pentanone lif at elevated temperatures and pressures: measurements and modeling. Appl Phys B 87:193–204

    Article  Google Scholar 

  • Moreau F (2010) Évaporation et dispersion d’un spray bi-composant dans un écoulement de canal chauffé fortement turbulent: une approche expérimentale. PhD thesis, Institut National Polytechnique de Toulouse, Université de Toulouse

  • Orain M, Grisch F, Rossow B (2008) Application de l’imagerie de fluorescence induite par laser á la mesure de richesse locale dans un spray multicomposants. In: Congrès Francophone de Techniques Laser, CFTL 2008, Futuroscope, 16–19 Sept 2008

  • Sirignano W (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sornek RJ, Dobashi R, Hirano T (2000) Effect of turbulence on vaporization, mixing, and combustion of liquid-fuel sprays. Combust Flame 120(4):479–491

    Article  Google Scholar 

  • Spalding (1951) Combustion of fuel particles. Fuel 30:121–130

  • Videto BD, Santavicca DA (1991) A turbulent-flow system for studying turbulent combustion processes. Combust Sci Technol 76(1–3):159–164

    Article  Google Scholar 

Download references

Acknowledgments

M. Marchal, G. Couteau, S. Cazin, E. Cid, and all the people of the mechanical workshop are gratefully thanked for their technical support. This project was funded by the PFA-ASTRA program, a collaboration between the CNRS and ONERA institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bazile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, F., Bazile, R. Evaporation of bi-component droplets in a heated, highly turbulent flow. Exp Fluids 53, 331–342 (2012). https://doi.org/10.1007/s00348-012-1292-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1292-6

Keywords

Navigation