Skip to main content
Log in

Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The noninvasive measurement of submicron liquid film thicknesses has been one of the greatest challenges in fluid mechanics experiments. Most applications require the time-dependent measurement of thin film thickness as it varies from macroscopic to microscopic dimensions. The current techniques lack resolution and range to capture the complete characteristics of these phenomena. Here, we use fluorescence microscopy as an optical technique to investigate the thickness of micro- and nanofilms as they evolve with time. We show that this technique is capable of measuring film thicknesses on the order of nanometers to millimeters with very high spatial resolution. Experimental examples are provided to demonstrate the various potential applications of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashmore J, Shen AQ, Kavehpour HP, Stone HA, McKinley GH (2008) Coating flows of non-newtonian fluids: weakly and strongly elastic limits. J Eng Math 60(1):17–41

    Article  MathSciNet  MATH  Google Scholar 

  • Baillet G, Giusti G, Guglielmetti R (1995) Study of the fatigue process and the yellowing of polymeric films containing spirooxazine photochromic compounds. Bull Chem Soc Jpn 68:1220–1225

    Article  Google Scholar 

  • Beaglehole D (1989) Profiles of the precursor of spreading drops of siloxane oil on glass, fused-silica, and mica. J Phys Chem 93(2):893–899

    Article  Google Scholar 

  • Becker T, Mugele F, Pompe T, Herminghaus S (2002) AFM imaging of liquid structures: from droplet profiles to molecular interactions. In: Soriaga MP, Stickney J, Bottomley LA, Kim Y-G (eds) Thin films: preparation, characterization, applications. Kluwer Academic, New York, pp 337–348

  • Berteloot G, Sharif-Kashani P, Kavehpour HP (2011) The effect of surface mobility on the uniformity of a thin film under a bubble. Phys Rev Lett 370(1):155–161

    Google Scholar 

  • Hardy BS, Uechi K, Zhen J, Kavehpour HP (2009) The deformation of flexible pdms microchannels under a pressure driven flow. Lab Chip 9:935–938

    Article  Google Scholar 

  • Heslot F, Cazabat AM, Fraysse N, Levinson P (1992) Experiments on spreading droplets and thin-films. Adv Colloid Interface Sci 39:129–145

    Article  Google Scholar 

  • Hidrovo CH, Hart DP (2001) Emission reabsorption laser induced fluorescence (erlif) film thickness measurement. Meas Sci Technol 12:467–477

    Article  Google Scholar 

  • Hoang A, Kavehpour HP (2011) Dynamics of nanoscale precursor film near moving contact line of spreading drops. Phys Rev Lett 106(25):254501

    Article  Google Scholar 

  • Holden MA, Kumar S, Beskok A, Cremer PS (2003) Microfluidic diffusion diluter: bulging of the microchannels under pressure-driven flow. J Micromech Microeng 13:412–418

    Article  Google Scholar 

  • Kavehpour HP, Ovryn B, McKinley GH (2003) Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Phys Rev Lett 91(19):7

    Article  Google Scholar 

  • Kim J, Kim MH (2005) A photochromic dye activation method for measuring the thickness of liquid films. Bull Korean Chem Soc 26:966–872

    Article  Google Scholar 

  • Leger L, Erman M, Guinetpicard AM, Ausserre D, Strazielle C (1988) Precursor film profiles of spreading liquid-drops. Phys Rev Lett 60(23):2390–2393

    Article  Google Scholar 

  • Leger L, Erman M, Guinetpicart AM, Ausserre D, Strazielle C, Benattar JJ, Rieutord F, Daillant J, Bosio L (1988) Spreading of non volatile liquids on smooth solid-surfaces—role of long-range forces. Revue De Physique Appliquee 23(6):1047–1054

    Article  Google Scholar 

  • Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931–980

    Article  Google Scholar 

  • Rost FWD (1991) Quantitative fluorescence microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Spaid MA, Homsy GM (1994) Viscoelastic free-surface flows—spin-coating and dynamic contact lines. J Nonnewton Mech 55(3):249–281

    Article  Google Scholar 

  • Xu H, Shirvanyants D, Beers K, Matyjaszewski K, Rubinstein M, Sheiko SS (2004) Molecular motion in a spreading precursor film. Phys Rev Lett 93(20). Article no. 206103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pirouz Kavehpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang, A., Berteloot, G., Sharif-Kashani, P. et al. Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy. Exp Fluids 52, 1657–1662 (2012). https://doi.org/10.1007/s00348-012-1279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1279-3

Keywords

Navigation