Skip to main content
Log in

Error estimation of temperature measurements in non-isothermal shear layers

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A simple analytical model has been developed to estimate the error of an invasive temperature measurement technique in a non-isothermal environment. The error depends significantly on the sensor geometry and the temperature distribution of the surrounding fluid. The problem is described in such a way that the model can easily be adapted to other sensor geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  • Baehr HD, Stephan K (2006) Heat and mass transfer, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Baker B (1998) Temperature sensing technologies. http://www.sskteracon.com/ExternalFiles/00002.pdf

  • Childs P, Greenwood J, Long C (2000) Review of temperature measurement. Rev Sci Instrum 71(8):2959–2978. doi:10.1063/1.1305516

    Article  Google Scholar 

  • du Puits R, Resagk C, Tilgner A, Busse FH, Thess A (2007a) Structure of thermal boundary layers in turbulent Rayleigh-Benard convection. J Fluid Mech 572:231–254. doi:10.1017/S0022112006003569

    Article  MATH  Google Scholar 

  • du Puits R, Resagk C, Thess A (2007b) Mean velocity profile in confined turbulent convection. Phys Rev Lett 99(23). doi:10.1103/PhysRevLett.99.234504

  • Gnielinski V (1975) Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung. Forsch Ing-wes 41:145–153. doi:10.1007/BF02560793

    Article  Google Scholar 

  • Incropera F, DeWitt D (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

    Google Scholar 

  • Kobus C (2006) True fluid temperature reconstruction compensating for conduction error in the temperature measurement of steady fluid flows. Rev Sci Instrum 77(3, Part 1). doi:10.1063/1.2186211

  • Kukuruznyak D, Miller J, Gregg M, Ohuchi F (2005) Fast response thin-film thermistor for measurements in ocean waters. Rev Sci Instrum 76(2). doi:10.1063/1.1851494

  • Li FC, Wang DZ, Kawaguchi Y, Hishida K (2004) Simultaneous measurements of velocity and temperature fluctuations in thermal boundary layer in a drag-reducing surfactant solution flow. Exp Fluids 36(1):131–140. doi:10.1007/s00348-003-0687-9

    Article  Google Scholar 

  • Li J, Lockhart J, Boretsky P (2004) Cryogenic precision digital temperature control with peaked frequency response. Rev Sci Instrum 75(5, Part 1):1182–1187. doi:10.1063/1.1710691

    Article  Google Scholar 

  • Lui SL, Xia KQ (1998) Spatial structure of the thermal boundary layer in turbulent convection. Phys Rev E 57(5, Part B):5494–5503. doi:10.1103/PhysRevE.57.5494

    Article  Google Scholar 

  • Lyons B, Samulski T, Britt R (1985) Temperature-measurement in high thermal-gradients: 1. The effects of conduction. Int J Radiat Oncol Biol Phys 11(5):951–962. doi:10.1016/0360-3016(85)90118-X

    Article  Google Scholar 

  • Maystrenko A, Resagk C, Thess A (2007) Structure of the thermal boundary layer for turbulent Rayleigh-Benard convection of air in a long rectangular enclosure. Phys Rev E 75(6, Part 2). doi:10.1103/PhysRevE.75.066303

  • McGee T (1988) Principles and methods of temperature measurement, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  • Samulski T, Lyons B, Britt R (1985) Temperature-measurements in high thermal-gradients: 2. Analysis of conduction effects. Int J Radiat Oncol Biol Phys 11(5):963–971. doi:10.1016/0360-3016(85)90119-1

    Article  Google Scholar 

  • Singh V, Eaton F, Rubio R (1992) The effects of prongs in the measurement of atmospheric-turbulence with fine-wire resistance transducers. J Atmos Ocean Technol 9(2):164–168. doi:10.1175/1520-0426(1992)009<0164:TEOPIT>2.0.CO;2

    Google Scholar 

  • Tagawa M, Nagaya S, Ohta Y (2001) Simultaneous measurement of velocity and temperature in high-temperature turbulent flows: a combination of LDV and a three-wire temperature probe. Exp Fluids 30(2):143–152. doi:10.1007/s003480000149

    Article  Google Scholar 

  • Whitaker S (1972) Forced convection heat-transfer correlations for flow in pipes, past flat plates, single cylinders, single sphere and for flow in packed-beds and tube bundles. AICHE J 18(2):361–371. doi:10.1002/aic.690180219

    Article  Google Scholar 

  • Z’Graggen A, Friess H, Steinfeld A (2007) Gas temperature measurement in thermal radiating environments using a suction thermocouple apparatus. Meas Sci Technol 18(11):3329–3334. doi:10.1088/0957-0233/18/11/010

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledgement the financial support for the Deutsche Forschungsgemeinschaft under the grant number TH 497/22-1. We also thank André Thess for fruitful and inspiring discussions and Vigimantas Mitschunas and Klaus Henschel for the technical support during the temperature measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, R., du Puits, R. Error estimation of temperature measurements in non-isothermal shear layers. Exp Fluids 53, 137–143 (2012). https://doi.org/10.1007/s00348-012-1271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1271-y

Keywords

Navigation