Skip to main content
Log in

Experimental characterization of thin films, droplets and rivulets using LED fluorescence

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Imaging based on fluorescence has been used in the past to investigate, mostly in a qualitative manner, liquid films occurring in various applications. In the present paper, a simple quantitative experimental setup and the associated calibration procedure are detailed for a configuration involving Rhodamin B or Rhodamin 101 excited with light-emitting diodes (LEDs). The measurement procedure has been first validated for an open-channel flow considering different Reynolds numbers around 550 and has then been applied to the characterization of thin films, isolated droplets and rivulets. Using this technique the film thickness, film velocity and contact angle have been evaluated accurately for a variety of flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adomeit P, Renz U (2000) Hydrodynamics of three-dimensional waves in laminar falling films. Int J Multiphase Flow 26(7):1183–1208

    Article  MATH  Google Scholar 

  • Aguinaga S, Bouchet JP (2009) Quantitative assessment by UV fluorescence of rain water flow on vehicle body in Jules Verne Climatic Wind tunnel. In: 7th FKFS conference “Progress in vehicle aerodynamics and thermal management”, Stuttgart, Germany

  • Alekseenko S, Nakoryakov V, Pokusaev B (1994) Wave flow of liquid films. Begell House, New York

    Google Scholar 

  • Alekseenko SV, Antipin VA, Guzanov VV, Kharlamov SM, Markovich DM (2005) Three-dimensional solitary waves on falling liquid film at low Reynolds numbers. Phys Fluids 17(12):121704

    Article  Google Scholar 

  • Ausner I (2006) Experimental investigations on multi-phase film flows. PhD thesis, Technical University Berlin

  • Bordás R, Hagemeier T, Thévenin D, Wunderlich B (2006) LDV-Signale beinhalten mehr Informationen als nur die Geschwindigkeit. In: Lasermethoden in der Strömungsmesstechnik, GALA, pp. 23/1–23/7

  • Brinkmann B, Möller T (2009) Dickenbestimmung eines schubspannungsgetriebenen Wandfilmes auf einer geneigten ebenen Platte mittels Laserlichtschnitt. In: 17. GALA-Fachtagung, Erlangen, Deutschland, ISBN 978-3-9805613-5-8

  • Chinnov E, Kharlamov S, Saprykina A, Zhukovskaya O (2007) Measuring deformations of the heated liquid film by the fluorescence method. Thermophys Aeromech 14:241–246

    Article  Google Scholar 

  • Culkin J, Davis S (1984) Meandering of water rivulets. AlChE J 30:263–267

    Article  Google Scholar 

  • Dhiman R, Chandra S (2009) Rupture of thin films formed during droplet impact. Proc R Soc A 466:1229–1245

    Article  Google Scholar 

  • Eckbreth A (1988) Laser diagnostics for combustion temperature and species. Gordon and Breach Publisher, NY

    Google Scholar 

  • Greszik D, Yang H, Dreier T, Schulz C (2011) Measurement of water film thickness by laser-induced fluorescence and Raman imaging. Appl Phys B 102:123–132

    Article  Google Scholar 

  • Hagemeier T, Hartmann M, Thévenin D (2011) Practice of vehicle soiling investigationsa review. Int J Multiphase Flow 37(8):860–875

    Article  Google Scholar 

  • Hidrovo C, Hart D (2001) Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement. Meas Sci Technol 12:467–477

    Article  Google Scholar 

  • Inagaki H, Saito A, Murakami M, Konomi T (1995) Development of two-dimensional oil film thickness distribution measuring system. SAE Paper 952346:59–67

    Google Scholar 

  • Johnson M, Schluter R, Bankoff S (1997) Fluorescent imaging system for global measurement of liquid film thickness and dynamic contact angle in free surface flows. Rev Sci Instrum 11:4097–4102

    Article  Google Scholar 

  • Johnson M, Schluter R, Miksis M, Bankoff S (1999) Experimental study of rivulet formation on an inclined plate by fluorescent imaging. J Fluid Mech 394:339–354

    Article  MATH  Google Scholar 

  • Kohse-Höinghaus K, Jeffries J (2002) Applied combustion diagnostics. Taylor & Francis, UK

    Google Scholar 

  • Lehwald A, Thévenin D, Zähringer K (2010) Quantifying macro-mixing and micro-mixing in a static mixer using two-tracer laser-induced fluorescence. Exp Fluids 48:823–836

    Article  Google Scholar 

  • Lel V, Al-Sibai F, Leefken A, Renz U (2005) Local thickness and wave velocity measurement of wavy films with chromatic confocal imaging method and a fluorescence intensity technique. Exp Fluids 39:856–864

    Article  Google Scholar 

  • Liu J, Paul J, Gollub J (1993) Measurement of the primary instabilities of film flows. J Fluid Mech 250:69–101

    Article  Google Scholar 

  • Martinuzzi R, Tropea C (1993) The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. J Fluids Eng 115:85–92

    Article  Google Scholar 

  • Moran K, Inumaru J, Kawaji M (2002) Instantaneous hydrodynamics of a laminar wavy liquid film. Int J Multiphase Flow 28(5):731–755

    Article  MATH  Google Scholar 

  • Mouza A, Vlachos N, Paras S, Karabelas A (2000) Measurement of liquid film thickness using a laser light absorption method. Exp Fluids 28:355–359

    Article  Google Scholar 

  • Nusselt W (1916) Die Oberflächenkondensation des Wasserdampfes. VDI-Zeitschrift 60:541

    Google Scholar 

  • Schubring D, Ashwood A, Shedd T, Hurlburt E (2010) Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part I: methods and data. Int J Multiphase Flow 36(10):815–824

    Article  Google Scholar 

  • Schubring D, Shedd T, Hurlburt E (2010) Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part II: analysis and comparison to models. Int J Multiphase Flow 36(10):825–835

    Article  Google Scholar 

  • Šikalo Š, Wilhelm HD, Roisman I, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17:1–13

    Google Scholar 

  • Tropea C, Yarin A, Foss J (2007) Handbook of experimental fluid mechanics. Springer, Berlin

    Book  Google Scholar 

  • Winkels K, Peters I, Evangelista F, Riepen M, Daerr A, Limat L, Snoeijer J (2011) Receding contact lines: from sliding drops to immersion lithography. Eur Phys J Special Topics 192:195–205

    Article  Google Scholar 

  • Zhou D, Gambaryan-Roisman T, Stephan P (2009) Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique. Exp Therm Fluid Sci 33(2):273–283

    Article  Google Scholar 

Download references

Acknowledgments

The support and helpful discussions with Róbert Bordás and Christoph Roloff are gratefully acknowledged. Furthermore, the authors would like to thank Nichia Corporation for material support with LEDs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hagemeier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MPG (8112 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagemeier, T., Hartmann, M., Kühle, M. et al. Experimental characterization of thin films, droplets and rivulets using LED fluorescence. Exp Fluids 52, 361–374 (2012). https://doi.org/10.1007/s00348-011-1232-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1232-x

Keywords

Navigation