Skip to main content
Log in

An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus)

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An unconventional mechanism of ventral clap is exploited by hovering passerines to produce lift. Quantitative visualization of the wake flow, analysis of kinematics and evaluation of the transient lift force was conducted to dissect the biomechanical role of the ventral clap in the asymmetrical hovering flight of passerines. The ventral clap can first abate and then augment lift production during the downstroke; the net effect of the ventral clap on lift production is, however, positive because the extent of lift augmentation is greater than the extent of lift abatement. Moreover, the ventral clap is inferred to compensate for the zero lift production of the upstroke because the clapping wings induce a substantial elevation of the lift force at the end of the downstroke. Overall, our observations shed light on the aerodynamic function of the ventral clap and offer biomechanical insight into how a bird hovers without kinematically mimicking hovering hummingbirds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander DE (2002) Nature’s flyers. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Cooter J, Baker PS (1977) Weis-Fogh clap and fling mechanism in Locusta. Nature 269:53–54

    Article  Google Scholar 

  • Dabiri JO (2005) On the estimation of swimming and flying forces from wake measurements. J Exp Biol 208:3519–3532

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033

    Article  Google Scholar 

  • Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    Article  Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philos Trans R Soc Lond B 305:79–113

    Article  Google Scholar 

  • Guermond JL (1990) A generalized lifting-line theory for curved and swept wings. J Fluid Mech 211:497–513

    Article  MathSciNet  MATH  Google Scholar 

  • Hedenström A, Spedding GR (2008) Beyond robins: aerodynamic analysis of animal flight. J R Soc Interface 5:595–601

    Article  Google Scholar 

  • Hedenström A, Rosén M, Spedding GR (2006) Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. J R Soc Interface 3:263–276

    Article  Google Scholar 

  • Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255

    Article  Google Scholar 

  • Johansson LC, Wolf M, Hedenström A (2010) A quantitative comparison of bird and bat wakes. J R Soc Interface 7:61–66

    Article  Google Scholar 

  • Lehmann LO (2004) The mechanism of lift enhancement in insect flight. Naturwissenschaften 91:101–122

    Article  Google Scholar 

  • Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253

    Article  Google Scholar 

  • Norberg UML (1990) Vertebrate flight. Springer, Berlin

    Google Scholar 

  • Norberg UML (2002) Structure, form, and function of flight in engineering and the living world. J Morph 252:52–81

    Article  Google Scholar 

  • Peng J, Dabiri JO (2008) An overview of a Lagrangian method for analysis of animal wake dynamics. J Exp Biol 211:280–287

    Article  Google Scholar 

  • Peng J, Dabiri JO, Madden PG, Lauder GV (2007) Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin. J Exp Biol 210:685–698

    Article  Google Scholar 

  • Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103:118102. doi:10.1103

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, New York

    Google Scholar 

  • Rosén M, Spedding GR, Hedenström A (2007) Wake structure and wingbeat kinematics of a house-martin Delichon urbica. J R Soc Interface 4:659–668

    Article  Google Scholar 

  • Saffman PG (1992) Vortex dynamics. Cambridge University Press, New York

    MATH  Google Scholar 

  • Spedding GR, Hedenström A (2009) PIV-based investigations of animal flight. Exp Fluids 46:749–763

    Article  Google Scholar 

  • Spedding GR, Rayner JMV, Pennycuick CJ (1984) Momentum and energy in the wake of a pigeon (Columba livia) in slow flight. J Exp Biol 111:81–102

    Google Scholar 

  • Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420:660–664

    Article  Google Scholar 

  • Stamhuis EJ, Nauwelaerts S (2005) Propulsive force calculations in swimming frogs. II. Application of a vortex ring model to DPIV data. J Exp Biol 208:1445–1451

    Article  Google Scholar 

  • Su JY, Ting SC, Chang YH, Yang JT (2011) Aerodynamic trick for visual stabilization during downstroke in a hovering bird. Phys Rev E (in press)

  • Taylor PM (1972) Hovering behavior by house finches. Condor 74:219–221

    Article  Google Scholar 

  • Ting SC, Yang JT (2008) Pitching stabilization via caudal fin-wave propagation in a forward-sinking Parrot Cichlid (Cichlasoma citrinellum × Cichlasoma synspilum). J Exp Biol 211:3147–3159

    Article  Google Scholar 

  • Ting SC, Yang JT (2009) Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition. Phys Fluids 21:041901. doi:10.1063/1.3122802

    Article  Google Scholar 

  • Tytell ED, Ellington CP (2003) How to perform measurements in a hovering animal’s wake: physical modeling of the vortex wake of the hawkmoth, Manduca sexta. Phil Trans R Soc Lond B 358:559–1566

    Article  Google Scholar 

  • Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219

    Article  Google Scholar 

  • Warrick DR, Bundle MW, Dial KP (2002) Bird maneuvering flights: blurred bodies, clear heads. Integ Comp Biol 42:141–148

    Article  Google Scholar 

  • Warrick DR, Tobalske BW, Powers DP (2005) Aerodynamics of the hovering hummingbird. Nature 435:1094–1097

    Article  Google Scholar 

  • Warrick DR, Tobalske BW, Powers DP (2009) Lift production in the hovering hummingbird. Proc R Soc B 276:3747–3752

    Article  Google Scholar 

  • Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  • Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552

    Article  Google Scholar 

Download references

Acknowledgments

National Science Council of the Republic of China partially supported this work under contracts NSC96-2628-E-002-256-MY3, NSC96-2628-E-002-258-MY3, NSC97-2221-E-035-087-MY3 and NSC99-2218-E007-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Tang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YH., Ting, SC., Liu, CC. et al. An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus). Exp Fluids 51, 1231–1243 (2011). https://doi.org/10.1007/s00348-011-1145-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1145-8

Keywords

Navigation