Skip to main content
Log in

Experimental time-resolved study of the interaction between a pulsating injectant and a steady cross-flow: aerodynamics of film cooling

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A test rig incorporating the injection from a single cylindrical hole with an inclination of 30° to a thermally uniform mainstream flow was used for determining variations in flow structures due to injectant pulsation. The average blowing ratios (\( \overline{M} \)) were 0.65, 1, and 1.25. The periodic variations in injectant flow were rendered by a loudspeaker-based pulsation system to nondimensionalized excitation frequency (\( St \)) of 0, 0.2, 0.3, and 0.5. Pulsation resulting in a close-wall orientation of injectant fluid compared with steady blowing bearing outward orientation was only observed in few cases. At \( \overline{M} \) = 0.65, jet fluid remains aligned and covers a significant part of the wall under steady blowing. At higher blowing ratios, pulsation induces large spatial variations in the jet trajectory, collapsing of the jet body, and the shedding of wake structures due to the periodic variation of injection flow rate. It was found that the pulsation improves wall coverage of the injectant fluid under low frequency excitation as the separation of the jet from the wall becomes evident (\( \overline{M} \) = 1 and 1.25).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( \overline{M} \) :

Blowing ratio (=\( {{\rho_{i} u_{i} } \mathord{\left/ {\vphantom {{\rho_{i} u_{i} } {\rho_{\infty } u_{\infty } }}} \right. \kern-\nulldelimiterspace} {\rho_{\infty } u_{\infty } }} \))

\( \rho \) :

Fluid density (kg/m3)

\( D \) :

Hole diameter (mm)

\( St \) :

Strouhal number (=\( {{f \cdot D} \mathord{\left/ {\vphantom {{f \cdot D} {\overline{{U_{i} }} }}} \right. \kern-\nulldelimiterspace} {\overline{{U_{i} }} }} \))

\( U \) :

Streamwise velocity (m/s)

\( V \) :

Normal velocity (m/s)

\( u \) :

Streamwise velocity fluctuation (m/s)

\( v \) :

Normal velocity fluctuation (m/s)

\( u_{\tau } \) :

Friction velocity (m/s)

\( U^{ + } \) :

U normalized by friction velocity (=\( {U \mathord{\left/ {\vphantom {U u}} \right. \kern-\nulldelimiterspace} u}_{\tau }^{{}} \))

\( IT_{{}} \) :

Turbulent intensity (%)

\( \delta \) :

Boundary layer thickness (mm)

\( \delta^{*} \) :

Displacement thickness (mm)

\( \sqrt {\overline{{u^{2} }} } \) :

X-component of RMS velocity (m/s)

\( \sqrt {\overline{{v^{2} }} } \) :

Y-component of RMS velocity (m/s)

\( \overline{uv} \) :

Reynolds shear stress (m/s)²

\( t \) :

Time (s)

\( T \) :

Period of pulsation (s)

\( f \) :

Frequency (Cycles/s)

\( \theta \) :

Phase (radian).

\( \phi \) :

Phase shift (radian)

\( \omega \) :

Angular frequency (radians/s)

\( x,y \) :

Streamwise and normal coordinates (mm)

\( y^{ + } \) :

Normal coordinate in wall units (=\( {{y \cdot u_{\tau } } \mathord{\left/ {\vphantom {{y \cdot u_{\tau } } \nu }} \right. \kern-\nulldelimiterspace} \nu } \))

i :

Injectant

∞:

Free-stream

rms :

Root mean square

:

Time-averaged

~:

Periodic component

a:

Amplitude

h:

Nominal hole

j :

Index number

acq :

Acquisition

s :

Excitation

References

  • Andreopoulos J (1983) Heat transfer measurement in a heated jet-pipe flow issuing into a cold cross steam. Phys Fluids 26:3201–3210

    Article  Google Scholar 

  • Andreopoulos J (1985) On the structure of jets in a crossflow. J Fluid Mech 157:163–197

    Article  Google Scholar 

  • Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136

    Article  Google Scholar 

  • Bons JP, Rivir JB, Mac Arthur CD, Pestian DJ (1996) The effect of unsteadiness on film cooling effectiveness. Wright Laboratory, WL-TR-96–2096

  • Brundage AL, Plesniak MW, Ramadhyani S (1999) Influence of coolant feed direction and hole length on film cooling jet velocity profiles. International gas turbine and aeroengine congress and exhibition, June 1999, Indianapolis, Indiana

  • Burd SW, Kaszeta RW, Simon TW (1996) Measurement in film cooling flows: hole L/D and turbulence intensity effects. Gas turbine heat transfer session, 1996 IMECE conference, Atlanta, GA

  • Dorignac E, Vullierme JJ, Deniboire P, Foucault E, Bousgarbies JL (1992) Thermographie Infrarouge et tomographie laser appliqués à l’étude des films de refroidissement. 5ème colloque national de visualisation et de traitement d’images en mécanique des fluides, pp 2–5 Juin 1992, Poitiers

  • Dorignac E, Vullierme JJ, Delouche E, Garem JH, Leblanc R (1993) Blowing rate effects on the heat transfer coefficient on a film heated surface at transonic speed. In: Proceedings of the international symposium on experimental and computational aerodynamics of internal flow, July 12–15 1993, Prague

  • Eckert ERG (1970) Gas‐to‐gas film cooling. Published in Inzhenerno-Rizicheskii Zhurnal, SpringerLink, 19:426–440

  • Eriksen VL, Goldstein RJ (1974) Heat transfer and film cooling following injection through inclined circular tubes. ASME J Heat Transf 96:239–245

    Article  Google Scholar 

  • Foucault E, Deniboire P, Bousgarbies JL, Vullierme JJ, Dorignac E, (1992) Etude expérimentale du transfert de chaleur près d’une paroi plane chauffée en présence d’injection multiples (Ecoulement subsonique). Heat transfer and cooling in gas turbine, AGARD-CP-527, p 4

  • Goldstein RJ, Eckert ERG (1974) Effects of hole geometry and density on three-dimensional film cooling. Int J Heat Mass Transf 17:595–607

    Article  Google Scholar 

  • Kartuzova O, Danila D, Ibrahim MB (2009) Computational simulation of cylindrical film hole with jet pulsation on flat plates. AIAA J Propul 6(25):1249–1258

    Article  Google Scholar 

  • Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144

    Article  Google Scholar 

  • Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  MATH  Google Scholar 

  • Lee SW, Lee JS, Ro ST (1994) Experimental study on the flow characteristics of streamwise inclined jets in crossflow on flat plate. ASME J Turbomach 116:97–105

    Article  Google Scholar 

  • Ligrani PM, Ciriello S, Bishop DT (1992) Heat transfer, adiabatic effectiveness, and injectant distribution downstream of a single row and two staggered rows of compound angle film cooling holes. ASME J Turbomach 114:687–700

    Article  Google Scholar 

  • Ligrani PM, Gong R, Cuthrell JM (1996a) Bulk flow pulsations and film cooling-I: injectant behavior. Int J Heat Mass Transf 39:2271–2282

    Article  Google Scholar 

  • Ligrani PM, Gong R, Cuthrell JM (1996b) Bulk flow pulsations and film cooling-II: flow structure and film effectiveness. Int J Heat Mass Transf 39:2283–2292

    Article  Google Scholar 

  • Ligrani PM, Gong R, Cuthrell JM, Lee JS (1997) Effects of bulk flow pulsations on film-cooled boundary layer structure. ASME J Fluids Eng 119:56–66

    Article  Google Scholar 

  • Marek CJ, Tacina RR (1975) Effect of free-stream turbulence on film cooling. NASA technical note, NASA TN D-7958

  • Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80

    Article  Google Scholar 

  • Muldoon F, Acharya S (2009) DNS study of pulsed film cooling for enhanced cooling effectiveness. Int J Heat Mass Transf 52:3118–3127

    Article  MATH  Google Scholar 

  • Pietrzyk JR, Bogard DG, Crawford ME (1989) Hydrodynamic measurement of jets in crossflow for gas turbine film cooling application. ASME J Turbomach 111:139–145

    Article  Google Scholar 

  • Rutledge JL, King PI, Rivir R (2009) CFD prediction of the frequency dependence of pulsed film cooling heat flux on a turbine blade leading edge. In: Proceedings of the 47th AIAA aerospace sciences meeting, Jan 2009, Orlando. AIAA paper 2009–0680

  • Sargison JE, Guo SM, Oldfield MLG, Lock GD, Rawlinson AJ (2002) A converging slot-hole film-cooling geometry. Part 1: low-speed flat plate heat transfer and loss. ASME J Turbomach 124:453–460

    Article  Google Scholar 

  • Seo HJ, Lee JS, Ligrani PM (1998) The effect of injection hole length on film cooling with bulk flow pulsation. Int J Heat Mass Transf 41:3515–3528

    Article  Google Scholar 

  • Sinha AK, Bogard DG, Crawford ME (1991) Gas turbine film cooling: Flowfield due to a second row of holes. ASME J Turbomach 113:450–456

    Article  Google Scholar 

  • Walters DK, Leylek JH (2000) A detailed analysis of film cooling physics. Part 1: streamwise injection with cylindrical holes. ASME J Turbomach 122:102–111

    Article  Google Scholar 

  • Yuen CHN, Martinez-Botas RF (2003) Film cooling characteristics of a single round hole at various streamwise angles in a crossflow. Part I: effectiveness. Int J Heat Mass Transf 46:221–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Sultan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultan, Q., Lalizel, G., Fénot, M. et al. Experimental time-resolved study of the interaction between a pulsating injectant and a steady cross-flow: aerodynamics of film cooling. Exp Fluids 51, 1245–1259 (2011). https://doi.org/10.1007/s00348-011-1144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1144-9

Keywords

Navigation