Skip to main content
Log in

Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al’zhanov KZ, Musenov KK (2003) Bayandamalary Kazak. Resp Ulttyk Gylym Akadem (1):32–38

  • Barreras F, Lozano A, Valino L, Mustata R, Marin C (2008) Fluid dynamics performance of different bipolar plates Part I. Velocity and pressure fields. J Power Sources 175:841–850

    Article  Google Scholar 

  • Bessler WG, Schulz C, Lee T, Jeffries JB, Hanson RK (2002) Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0, 0) excitation. Appl Opt 41:3547–3557

    Article  Google Scholar 

  • Boedeker LR (1989) Velocity measurements by H2O photolysis and laser-induced fluorescence of OH. Opt Lett 14:473–475

    Article  Google Scholar 

  • Burgmann S, van der Schoot N, Wartmann J, Lindken R (2011a) Micro Particle-Image-Velocimetry für Gaströmungen in Mikrokanälen. tm - Technisches Messen 78:253–259

  • Burgmann S, van der Schoot N, Asbach C, Wartmann J, Lindken R (2011b) Analysis of tracer particle characteristics for micro PIV in wall-bounded gas flows. Houille Blanche-Revue internationale de l eau (in print)

  • Grega L, Mc Garry M (2007) Flow characterization of a polymer electronic membrane fuel cell manifold and individual cells using particle image velocimetry. J Fuel Cell Sci Techn 4:272–279

    Article  Google Scholar 

  • Grünefeld G, Bartelheimer J, Finke H, Krüger S (1999) Application of gaseous image velocimetry to laminar, unsteady flames. In: Proceedings of 17th ICDERS, Heidelberg

  • Kee RJ, Clotrin ME, Glarborg P (2003) Chemical reacting flow. Wiley, Hobocken

    Book  Google Scholar 

  • Koochesfahani MM, Nocera DG (2001) Molecular tagging velocimetry maps fluid flows. Laser Focus World, Los Gartos, pp 103–108

  • Krüger S, Grünefeld G (1999) Stereoscopic flow-tagging velocimetry. Appl Phys B 69:509–512

    Article  Google Scholar 

  • Lindken R, Burgmann S (2011) Laser-optical methods for transport studies. In: Hartnig C, Roth C (eds) Polymer electrolyte membrane and direct methanol fuel cell technology (PEMFCs and DMFCs). Woodhead Publishing Ltd, Cambridge (in print)

  • Lindken R, Rossi M, Grosse S, Westerweel J (2009) Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab Chip 9:2551–2567

    Article  Google Scholar 

  • Lozano A, Yip B, Hanson RK (1992) Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp Fluids 13:369–376

    Article  Google Scholar 

  • Martin J, Oshkai P, Djilali N (2005) Flow structures in a U-shaped fuel cell flow channel: quantitative visualization using particle image velocimetry. J Fuel Cell Sci Technol 2:70–80

    Article  Google Scholar 

  • Mehta V, Cooper JS (2003) Analysis of PEM fuel cell design. J Power Sources 114:32–53

    Article  Google Scholar 

  • Miles R, Cohen C, Conners J et al (1987) Velocity measurements by vibrational tagging and fluorescent probing of oxygen. Opt Lett 12:861

    Article  Google Scholar 

  • Orlemann C, Schulz C, Wolfrum J (1999) NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures. Chem Phys Lett 307:15–20

    Article  Google Scholar 

  • Roetmann K, Schmunk W, Garbe CS, Beushausen V (2008) Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering. Exp Fluids 44:419–430

    Article  Google Scholar 

  • Sugii Y, Okamoto K (2006) Velocity measurement of gas flow using micro PIV technique in polymer electrolyte fuel cell. In: Proceedings of ICNMM2006 96216

  • van der Laan WPN, Tolboom RAL, Dam NJ, ter Meulen JJ (2003) Molecular tagging velocimetry in the wake of an object in supersonic flow. Exp Fluids 34:531–534

    Google Scholar 

  • van der Schoot N, Asbach C, Wartmann J, Heinzel H, Lindken R (2010) Development of gas-phase micro-PIV for fuel cells investigations. In: Proceedings of GASMEMS2010-DY07, Les Embiez, France, 5–10 July 2010

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576

    Article  Google Scholar 

  • Winkelmann J (2007a) Diffusion of hydrogen. In: Lechner MD (ed) SpringerMaterials—the Landolt-Börnstein database (http://www.springermaterials.com). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-49718-9_28

  • Winkelmann J (2007b) Diffusion of argon. In: Lechner MD (ed) SpringerMaterials—the Landolt-Börnstein database (http://www.springermaterials.com). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-49718-9_4

  • Yoon SY, Ross JW, Mench MM, Sharp KV (2006) Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J Power Sources 160:1017–1025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecht, C., van der Schoot, N., Kronemayer, H. et al. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry. Exp Fluids 52, 743–748 (2012). https://doi.org/10.1007/s00348-011-1112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1112-4

Keywords

Navigation