Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation

Abstract

Hemodynamic forces within the human carotid artery are well known to play a key role in the initiation and progression of vascular diseases such as atherosclerosis. The degree and extent of the disease largely depends on the prevailing three-dimensional flow structure and wall shear stress (WSS) distribution. This work presents tomographic PIV (Tomo-PIV) measurements of the flow structure and WSS in a physiologically accurate model of the human carotid artery bifurcation. The vascular geometry is reconstructed from patient-specific data and reproduced in a transparent flow phantom to demonstrate the feasibility of Tomo-PIV in a complex three-dimensional geometry. Tomographic reconstruction is performed with the multiplicative line-of-sight (MLOS) estimation and simultaneous multiplicative algebraic reconstruction (SMART) technique. The implemented methodology is validated by comparing the results with Stereo-PIV measurements in the same facility. Using a steady flow assumption, the measurement error and RMS uncertainty are directly inferred from the measured velocity field. It is shown that the measurement uncertainty increases for increasing light sheet thickness and increasing velocity gradients, which are largest near the vessel walls. For a typical volume depth of 6 mm (or 256 pixel), the analysis indicates that the velocity derived from 3D cross-correlation can be measured within ±2% of the maximum velocity (or ±0.2 pixel) near the center of the vessel and within ±5% (±0.6 pixel) near the vessel wall. The technique is then applied to acquire 3D-3C velocity field data at multiple axial locations within the carotid artery model, which are combined to yield the flow field and WSS in a volume of approximately 26 mm × 27 mm × 60 mm. Shear stress is computed from the velocity gradient tensor and a method for inferring the WSS distribution on the vessel wall is presented. The results indicate the presence of a complex and three-dimensional flow structure, with regions of flow separation and strong velocity gradients. The WSS distribution is markedly asymmetric confirming a complex swirling flow structure within the vessel. A comparison of the measured WSS with Stereo-PIV data returns an acceptable agreement with some differences in stress magnitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    Center of the vessel cross-section refers to the central area of the cross-section where uniform pipe flow exhibits a velocity maxima.

References

  1. Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47(4):553–568

    Article  Google Scholar 

  2. Atkinson CH, Soria J (2007) Algebraic reconstruction techniques for tomographic particle image velocimetry. In: Proceedings of the 16th Australasian fluid mechanics conference, Gold Coast

  3. Bale-Glickman J, Selby K, Saloner D, Savas O (2003) Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. J Biomech Eng 125(1):38–48

    Article  Google Scholar 

  4. Berger SA, Talbot L, Yao LS (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512

    Article  Google Scholar 

  5. Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y, Poulikakos D (2009) CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J Biomech Eng 131(1):011008–011015

    Article  Google Scholar 

  6. Brunette J, Mongrain R, Laurier J, Galaz R, Tardif JC (2008) 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method. Med Eng Phys 30(9):1193–1200

    Article  Google Scholar 

  7. Buchmann N, Jermy M, Nguyen C (2009) Experimental investigation of carotid artery haemodynamics in an anatomically realistic model. Int J Exp Comput Biomech 1(2):172–192

    Article  Google Scholar 

  8. Buchmann NA, Nguyen CV, Wells JC, Jermy M (2008) In-vitro wall shear stress measurements using interfacial particle image velocimetry (IPIV). In: 14th International symposium on applications of laser techniques to fluid mechanics, Lisbon

  9. Burgmann S, Große S, Schröder W, Roggenkamp J, Jansen S, Gräf F, Büsen M (2009) A refractive index-matched facility for fluid–structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance. Exp Fluids 47(4–5):865–881

    Article  Google Scholar 

  10. Caro CG (2001) Vascular fluid dynamics and vascular biology and disease. Math Methods Appl Sci 24(17–18):1311–1324

    Article  MATH  MathSciNet  Google Scholar 

  11. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379–2393

    Article  Google Scholar 

  12. Ding Z, Wang K, Li J, Cong X (2001) Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation. J Biomech 34(12):1555–1562

    Article  Google Scholar 

  13. Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858

    Article  Google Scholar 

  14. Elsinga G, Adrian R, van Oudheusden B, Scarano F (2007) Tomographic-PIV investigation of a high reynolds number turbulent boundary layer. In 7th International symposium on particle image velocimetry, Rome

  15. Elsinga G, Westerweel J, Scarano F, Novara M (2009) On the velocity of ghost particles. In: 8th International symposium on particle image velocimetry, Melbourne

  16. Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947

    Article  Google Scholar 

  17. Fischer PF, Loth F, Lee SE, Lee S-W, Smith DS, Bassiouny HS (2007) Simulation of high-reynolds number vascular flows. Comput Methods Appl Mech Eng 196(31–32):3049–3060

    Article  MATH  MathSciNet  Google Scholar 

  18. Gijsen FJH, Palmen DEM, van der Beek MHE, van de Vosse FN, van Dongen MEH, Janssen JD (1996) Analysis of the axial flow field in stenosed carotid artery bifurcation models—LDA experiments. J Biomech 29:1483–1489

    Article  Google Scholar 

  19. Grant I, Owens E (1990) Confidence interval estimates in piv measurements of turbulent flows. Appl Opt 29(10):1400–1402

    Article  Google Scholar 

  20. Gray JD, Owen I, Escudier MP (2007) Dynamic scaling of unsteady shear-thinning non-newtonian fluid flows in a large-scaled modeld of a distal anastomosis. Exp Fluids 43(4):535–546

    Article  Google Scholar 

  21. Kähler CJ (2004) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo piv. Exp Fluids 36(1):114–130

    Article  Google Scholar 

  22. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of piv images. Appl Sci Res 49(3):191–215

    Article  Google Scholar 

  23. Ku DN, Giddens DP, Phillips DJ, Strandness DE (1985) Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med Biol 11(1):13–26

    Article  Google Scholar 

  24. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5(3):293–302

    Google Scholar 

  25. Lee S-W, Antiga L, Steinman DA (2009) Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131(6):061013–061017

    Article  Google Scholar 

  26. Liepsch D (2002) An introduction to biofluid mechanics—basic models and applications. J Biomech 35(4):415–435

    Article  Google Scholar 

  27. Liepsch D, Pflugbeil G, Matsuo T, Lesniak B (1998) Flow visualization and 1- and 3-D laser-Doppler-anemometer measurements in models of human carotid arteries. Clin Hemorheol Microcirc 18:1–30

    Google Scholar 

  28. Marshall I, Zhao S, Papathanasopouloua P, Hoskinsa P, Xub XY (2004) MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J Biomech 37:679–687

    Article  Google Scholar 

  29. Michaelis D, Wieneke B (2008) Comparison between tomographic PIV and stereo PIV. In: 14th International symposium on applications of laser techniques to fluid mechanics, Lisbon

  30. Moore S (2008) Computational 3D modelling of hemodynamics in the circle of Willis. VDM Verlag Dr. Mueller, New York

    Google Scholar 

  31. Motomiya M, Karino T (1984) Flow patterns in the human carotid artery bifurcation. Stroke 15(1):50–56

    Google Scholar 

  32. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28(7):845–856

    Article  Google Scholar 

  33. Poelma C, Vander Heiden K, Hierck BP, Poelmann RE, Westerweel J (2010) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J Roy Soc Interface 7(42):91–103

    Article  Google Scholar 

  34. Poelma C, Vennemann P, Lindken R, Westerweel J (2008) In vivo blood flow and wall shear stress measurements in the vitelline network. Exp Fluids 45(4):703–713

    Article  Google Scholar 

  35. Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15(1):49–60

    Article  Google Scholar 

  36. Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, Berlin

    Google Scholar 

  37. Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8(12):1441–1454

    Article  Google Scholar 

  38. Soria J (1996) An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp Thermal Fluid Sci 12(2):221–233

    Article  Google Scholar 

  39. Soria J, Atkinson C (2008) Towards 3c-3d digital holographic fluid velocity vector field measurement—tomographic digital holographic piv (tomo-hpiv). Meas Sci Technol 19(7):1–12

    Google Scholar 

  40. Spencer AJM (2004) Continuum mechanics. Dover Publications, New York

    Google Scholar 

  41. Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    Article  MathSciNet  Google Scholar 

  42. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18(5):677–685

    Google Scholar 

  43. van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp Fluids 42(2):259–279

    Article  Google Scholar 

  44. Vennemann P, Lindken R, Westerweel J (2007) In vivo whole-field blood velocity measurement techniques. Exp Fluids 42(4):495–511

    Article  Google Scholar 

  45. Vétel J, Garon A, Pelletier D (2009) Lagrangian coherent structures in the human carotid artery bifurcation. Exp Fluids 46(6):1067–1079

    Article  Google Scholar 

  46. Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100

    Article  Google Scholar 

  47. Wieneke B (2008) Volume self-calibration for 3d particle image velocimetry. Exp Fluids 45(4):549–556

    Article  Google Scholar 

  48. Wieneke B, Taylor S (2006) Fat-sheet PIV with computation of full 3D-strain tensor using tomographic reconstruction. In: 13th International symposium on applications of laser techniques to fluid mechanics, Lisbon

  49. Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12(6):353–358

    Article  Google Scholar 

  50. Zarins C, Giddens D, Bharadvaj B, Sottiurai V, Mabon R, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514

    Google Scholar 

  51. Zhang J-M, Chua LP, Ghista DN, Zhou T-M, Tan YS (2008) Validation of numerical simulation with piv measurements for two anastomosis models. Med Eng Phys 30(2):226–247

    Article  Google Scholar 

  52. Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33(8):975–984

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Buchmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchmann, N.A., Atkinson, C., Jeremy, M.C. et al. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50, 1131–1151 (2011). https://doi.org/10.1007/s00348-011-1042-1

Download citation

Keywords

  • Particle Image Velocimetry
  • Wall Shear Stress
  • Ghost Particle
  • Wall Shear Stress Distribution
  • Tomographic Particle Image Velocimetry