Skip to main content
Log in

Comparison of velocity and temperature measurements with simulations in a hypersonic wake flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A hypersonic shock-tunnel flow around an axisymmetric model of a planetary entry probe is analyzed. Planar laser-induced fluorescence is applied to measure both the velocity and the rotational temperature everywhere in the central plane of the flow field. The experimental test case is compared to simulations using the direct simulation Monte Carlo (DSMC) method. While the Mach 9.7 flow at a freestream Reynolds number based on the model diameter of 35,000 is chemically frozen, effects of thermal non-equilibrium and localized rarefaction cannot be neglected. DSMC and measurements agree well within the outer wake, but disagree close to the centerline, where in particular the measured velocity is higher than values predicted by the simulations. The experimental results indicated a shorter recirculation region and increased local fluctuations in the free shear layer upstream of the wake recompression shock when compared to the simulation. These effects are attributed to incipient transition, which is not observed in the simulations, as the simulations did not model the effects of freestream fluctuations. Furthermore, measured and simulated vorticities are compared with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Batchelor GK (1956) A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J Fluid Mech 1:177–190

    Article  MathSciNet  MATH  Google Scholar 

  • Beck WH (1999) Spectroscopic techniques for measurement of velocity and temperature in the DLR high enthalpy shock tunnel HEG. In: RTO AVT Course on “Measurement Techniques for High Enthalpy and Plasma Flows”, held in Rhode-Saint-Genese, Belgium

  • Behrens W (1968) Far wake behind cylinders at hypersonic speeds: II. Stability. AIAA J 6(2):225–228

    Article  Google Scholar 

  • Behrens W, Ko DRS (1971) Experimental stability studies in wakes of two-dimensional slender bodies at hypersonic speeds. AIAA J 9(5):851–857

    Article  Google Scholar 

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  • Bird GA (2007) Sophisticated DSMC. Notes prepared for a short course at the DSMC07 meeting, Santa Fe, New Mexico

  • Borgnakke C, Larsen PS (1975) Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J Comput Phys 18(4):405–420

    Article  Google Scholar 

  • Boyd ID, Chen G, Candler GV (1995) Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys Fluids 7(1):210–219

    Article  MATH  Google Scholar 

  • Chapman DR, Kuehn DM, Larson HK (1958) Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. Tech. Rep. NACA-report-1356, Ames Aeronautical Laboratory

  • Danckert A, Legge H (1996) Experimental and computational wake structure study for a wide-angle cone. J Spacecraft Rockets 33(4):476–482

    Article  Google Scholar 

  • Danehy PM, Mere P, Gaston MJ, O’Byrne S, Palma PC, Houwing AFP (2001) Fluorescence velocimetry of the hypersonic separated flow over a cone. AIAA J 39:1320–1328

    Article  Google Scholar 

  • Danehy PM, O’Byrne S, Houwing AFP, Fox JS, Smith DR (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41(2):263–271

    Article  Google Scholar 

  • Demetriades A (1964) Hot-wire measurements in the hypersonic wake of slender bodies. AIAA J 2(2):245–250

    Article  Google Scholar 

  • Demetriades A (1967) Turbulent fluctuation measurements in compressible, axisymmetric wakes. AIAA J 5(5):1028–1029

    Article  Google Scholar 

  • Demtröder W (1999) Laserspektroskopie, 4 edn. Springer, Berlin

    Google Scholar 

  • Denison MR, Baum E (1963) Compressible free shear layer with finite initial thickness. AIAA J 1(2):342–349

    Article  MATH  Google Scholar 

  • Dewey CF (1965) Near wake of a blunt body at hypersonic speeds. AIAA J 3(6):1001–1010

    Article  Google Scholar 

  • Dogra VK, Moss JN, Wilmoth RG, Taylor JC, Hassan H (1995) Effects of chemistry on blunt-body wake structure. AIAA J 33(3):463–469

    Article  Google Scholar 

  • Earls LT (1935) Intensities in \(^2{\Uppi}-^2{\Upsigma}\) transitions in diatomic molecules. Phys Rev 48:423–424

    Article  Google Scholar 

  • Eckbreth AC (1996) Laser diagnostics for combustion temperature and species, 2 edn. Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  • Gai SL (1992) Free piston shock tunnels: development and capabilities. Prog Aerospace Sci 29(1):1–41

    Article  MathSciNet  Google Scholar 

  • Gnoffo PA (1999) Planetary-entry gas dynamics. Ann Rev Fluid Mech 31:459–494

    Article  Google Scholar 

  • Gold H (1963) Stability of laminar wakes. Ph.D. thesis, California Institute of Technology, Pasadena, California

  • Grasso F, Pettinelli C (1995) Analysis of laminar near-wake hypersonic flows. J Spacecraft Rockets 32(6):970–980

    Article  Google Scholar 

  • Hornung HG, Lemieux P (2001) Shock layer instability near the Newtonian limit of hypervelocity flows. Phys Fluids 13(8):2394–2402

    Article  Google Scholar 

  • Houwing AFP, Palmer JL, Thurber MC, Wehe SD, Hanson RK, Boyce RR (1996) Comparison of planar fluorescence measurements and computational modelling of shock-layer flow. AIAA 34(3):470–477

    Article  Google Scholar 

  • Hruschka R, O’Byrne S, Kleine H (2008) Diode-laser-based near-resonantly enhanced flow visualisation in shock tunnels. Appl Opt 47(24):4352–4360

    Article  Google Scholar 

  • Hruschka R, O’Byrne S, Kleine H (2010) Two-component Doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model. Exp Fluids 48(6):1109–1120

    Article  Google Scholar 

  • Hruschka R, Park G, O’Byrne S, Kleine H (2009) Optical investigation of transient phenomena in hypersonic shock tunnels. In: Proceedings of SPIE, volume 7126, 28th international congress on high-speed imaging and photonics, Canberra, Australia, November 2008

  • Hruschka RB (2010) Optical studies and simulations of hypervelocity flow fields around blunt bodies. Ph.D. thesis, University of New South Wales at the Australian Defence Force Academy, School of Engineering and Information Technology

  • Inger GR, Moss JN (2007) Comparison of Navier-Stokes and direct simulation Monte Carlo predictions with separation. AIAA J 45(8):2102–2105

    Article  Google Scholar 

  • Lees L (1964) Hypersonic wakes and trails. AIAA J 2(3):417–528

    Article  MathSciNet  MATH  Google Scholar 

  • Liou WW, Fang Y, Bird GA (1993) DSMC simulations of forced chaotic flows. In: AIAA Paper, pp 1993–3595

  • Lofthouse AJ, Boyd ID, Wright MJ (2007) Effects of continuum breakdown on hypersonic aerothermodynamics. Phys Fluids 19(2):027, 105

    Article  Google Scholar 

  • Lofthouse AJ, Scalabrin LC, Boyd ID (2008) Velocity slip and temperature jump in hypersonic aerothermodynamics. J Thermophys Heat Trans 22(1):38–49

    Article  Google Scholar 

  • Metacomp Technologies (2007) CA 91301, USA: CFD++ (http://www.metacomptech.com)

  • McCarthy JF Jr, Kubota T (1964) A study of wakes behind a circular cylinder at M = 5.7. AIAA J 2(4):629–636

    Article  MATH  Google Scholar 

  • McIntosh MK (1968) Computer program for the numerical calculation of frozen and equilibrium conditions in shock tunnels. Tech. rep., Australian National University

  • McIntyre TJ, Bishop AI, Thomas AM, Sasoh A, Rubinsztein-Dunlop H (2000) Ionizing nitrogen and air flows in a superorbital expansion tube. AIAA J 38(9):1685–1691

    Article  Google Scholar 

  • McMillin BK (1993) Instantaneous two-line PLIF temperature imaging of nitric oxide in supersonic mixing and combustion flowfields. Ph.D. thesis, Stanford University, Department of Mechanical Engineering

  • Mitcheltree RA, DiFulvio M, Horvath TJ, Braun RD (1999) Aerothermal heating predictions for Mars Microprobe. J Spacecraft Rockets 36(3):405–411

    Article  Google Scholar 

  • Moss JN (2007) Direct simulation Monte Carlo simulations of ballute aerothermodynamics under hypersonic rarefied conditions. J Spacecraft Rockets 44(2):289–297

    Article  Google Scholar 

  • Moss JN, Bird GA (2005) Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions. AIAA J 43(12):2565–2573

    Article  Google Scholar 

  • Moss JN, Price JM (1997) Survey of blunt body flows including wakes at hypersonic low-density conditions. J Thermophys Heat Trans 11(3):321–329

    Article  Google Scholar 

  • Muntz EP, Softley EJ (1966) A study of laminar near wakes. AIAA J 4(6):961–968

    Article  Google Scholar 

  • Murman EM (1969) Experimental studies of a laminar hypersonic cone wake. AIAA J 7(9):1724–1730

    Article  MathSciNet  Google Scholar 

  • O’Byrne S (2002) Hypersonic laminar boundary layers and near-wake flows. Ph.D. thesis, Department of Physics, Australian National University

  • O’Byrne S, Danehy PM, Houwing AFP (2006) Investigation of hypersonic nozzle flow uniformity using NO fluorescence. Shock Waves 15(2):81–87

    Article  Google Scholar 

  • Ozawa T, Zhong J, Levin DA (2008) Development of kinetic-based energy exchange models for noncontinuum, ionized hypersonic flows. Phys Fluids 20(046102):1–18

    Google Scholar 

  • Pallone A, Erdos J, Eckermann J (1964) Hypersonic laminar wakes and transition studies. AIAA J 2(5):855–863

    Article  MATH  Google Scholar 

  • Park G, Hruschka R, Gai S, Neely A (2009) Flow establishment behind blunt bodies at hypersonic speeds in a shock tunnel. In: Proceedings of SPIE, Volume 7126, 28th International Congress on High-Speed Imaging and Photonics, Canberra, Australia, November 2008

  • Reeves BL (1965) Theory of laminar near wake of blunt bodies in hypersonic flow. AIAA J 3(11):2061–2074

    Article  Google Scholar 

  • Ruffin SM (1993) Vibrational relaxation times in expanding flows. J Spacecraft Rockets 30(1):59–68

    Article  Google Scholar 

  • Schneider SP (2001) Effects of high-speed tunnel noise on laminar-turbulent transition. J Spacecraft Rockets 38(3):323–333

    Article  Google Scholar 

  • Schwarzentruber TE, Scalabrin LC, Boyd ID (2008) Hybrid particle-continuum simulations of nonequilibium hypersonic blunt-body flowfields. J Thermophys Heat Trans 22(1):29–37

    Article  Google Scholar 

  • Seitzman JM, Hanson RK (1993) Planar fluorescence imaging in gases, chap 6. Academic Press, London

    Google Scholar 

  • Shen C (2005) Rarefied gas dynamics—fundamentals, simulations and micro flows, 1 edn. Springer, Berlin

    Google Scholar 

  • Slattery RE, Clay WG (1962) Laminar-turbulent transition and subsequent motion behind hypervelocity spheres. ARS J 32:1427–1429

    Google Scholar 

  • Sohn I, Ozawa T, Levin DA, Modest MF (2009) DSMC hypersonic reentry flow simulations with photon Monte Carlo radiation. In: AIAA Paper, pp 2009–1566

  • Todisco A, Pallone AJ (1965) Near wake flow field measurements. AIAA J 3(11):2075–2080

    Article  Google Scholar 

  • Venkatapathy E, Palmer G, Prabhu DK (1991) AFE base flow computations. In: AIAA Paper, pp 1991–1372

  • Waldbusser E (1967) Shape effects on hypersonic slender body wake geometry and transition distance. J Spacecraft Rockets 4(5):657–662

    Article  Google Scholar 

  • Webb WH, Hromas L, Lees L (1963) Hypersonic wake transition. AIAA J 1(3):719–721

    Article  Google Scholar 

  • Weiss RF (1966) Base pressure of slender bodies in laminar, hypersonic flow. AIAA J 4(9):1557–1559

    Article  Google Scholar 

  • Wilson LN (1967) Far wake behavior of hypersonic spheres. AIAA J 5(7):1238–1944

    Article  Google Scholar 

  • Zakkay V, Cresci RJ (1966) An experimental investigation of the near wake of a slender cone at M  = 8 and 12. AIAA J 4(1):41–46

    Article  Google Scholar 

  • Zhluktov SV, Utyuzhnikov SV, Tirsky GA (1996) Numerical investigation of thermal and chemical nonequilibrium flows past slender and blunted cones. J Thermophys Heat Trans 10(1):137–147

    Article  Google Scholar 

  • Zhong J, Ozawa T, Levin DA (2008) Comparison of high-altitude hypersonic wake flows of slender and blunt bodies. AIAA J 46(1):251–262

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council under discovery project DP0666941. We thank G. Foppoli and P. Walsh for their technical support. The contributions of G. Park, S. Gai and K. Watts are appreciated. Furthermore, we would like to acknowledge the courtesy of G. A. Bird for letting us use his DS2V (V4.5) DSMC code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hruschka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hruschka, R., O’Byrne, S. & Kleine, H. Comparison of velocity and temperature measurements with simulations in a hypersonic wake flow. Exp Fluids 51, 407–421 (2011). https://doi.org/10.1007/s00348-011-1039-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1039-9

Keywords

Navigation