Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV

Abstract

Coherent structures and their time evolution in the logarithmic region of a turbulent boundary layer investigated by means of 3D space–time correlations and time-dependent conditional averaging techniques are the focuses of the present paper. Experiments have been performed in the water tunnel at TU Delft measuring the particle motion within a volume of a turbulent boundary layer flow along a flat plate at a free-stream velocity of 0.53 m/s at Re θ = 2,460 based on momentum thickness by using time-resolved tomographic particle image velocimetry (PIV) at 1 kHz sampling rate and particle tracking velocimetry (PTV). The obtained data enable an investigation into the flow structures in a 3D Eulerian reference frame within time durations corresponding to 28 δ/U. An analysis of the time evolution of conditional averages of vorticity components representing inclined hairpin-like legs and of Q2- and Q4-events has been performed, which gives evidence to rethink the early stages of the classical hairpin development model for high Reynolds number TBLs. Furthermore, a PTV algorithm has been applied on the time sequences of reconstructed 3D particle image distributions identifying thousands of particle trajectories that enable the calculation of probability distributions of the three components of Lagrangian accelerations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

DNS:

Direct numerical simulations

HWA:

Hot-wire anemometry

LDA:

Laser Doppler anemometry

LSE:

Linear stochastic estimation

MART:

Multiplicative algebraic reconstruction technique

PDF:

Probability density function

PIV:

Particle image velocimetry

ppp:

Particles per pixel

PTV:

Particle tracking velocimetry

RMS:

Root mean square

(T)BL:

(Turbulent) boundary layer

TR:

Time resolved

WU:

Wall units

t :

Time

u, v, w :

Instantaneous velocity components in x- (streamwise), y- (wall normal) and z-(spanwise) directions

u′, v′, w′ :

Fluctuation velocity components

u+, v+, w+:

Instantaneous velocity components based on u τ

x, y, z:

Streamwise, wall normal and spanwise coordinates

ax, ay, az:

Components of Lagrangian acceleration

x+, y+, z+:

Distances in wall units based on u τ

kx, ky, kz:

Wavenumbers in x-, y- and z-direction

u τ :

Skin friction velocity

η:

Kolmogorov length scale

τ η :

Kolomogorov time scale

Re θ :

Reynolds number based on momentum thickness of boundary layer

Re τ :

Reynolds number based on u τ and δ

c f :

Skin friction coefficient

f :

Focal length

f # :

Aperture stop

Q1,…,Q4:

Quadrants of instantaneous Reynolds stress u′v′

Q, R:

Invariants of the velocity gradient tensor

U :

Free-stream velocity

δ:

Boundary layer thickness (0.99U )

δ0 = 2.6 mm:

(Boundary layer thickness at tripping)

λ2 :

Measure of swirl strength (second negative eigenvalue of S² + Ω²)

R ij :

Space–(time) correlation function (i and j scalars e.g. u′, v′ or w′)

k x ϕ ij :

Pre-multiplied cross- or co-spectrum

References

  1. Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301

    Article  Google Scholar 

  2. Choi J-I, Yeo K, Lee C (2004) Lagrangian statistics in turbulent channel flow. Phys Fluids 16(3):779–793

    Article  Google Scholar 

  3. Christensen KT, Adrian RJ (2001) Statistical evidence of hairpin vortex packets in wall turbulence. J Fluid Mech 431:433–443

    Article  MATH  Google Scholar 

  4. Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech IV, 1–51

  5. del Alamo JC, Jiménez PZ (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26

    Article  MATH  MathSciNet  Google Scholar 

  6. del Alamo JC, Jiménez PZ, Zandonade P, Moser RD (2006) Self-similar vortex clusters in the turbulent logarithmic region. J Fluid Mech 561:329–358

    Article  MATH  Google Scholar 

  7. Dennis DJC, Nickels BT (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206

    Article  MATH  MathSciNet  Google Scholar 

  8. Diorio J, Douglas HK, Wallace JM (2007) The spatial relationships between dissipation and production rates and vertical structures in turbulent boundary and mixing layers. Phys Fluids 19:035–101

    Article  Google Scholar 

  9. Elsinga GE (2008) Tomographic particle image velocimetry and its application to turbulent boundary layers. Ph.D. dissertation, Delft University of Technology (http://repository.tudelft.nl/file/1003861/379883)

  10. Elsinga GE, Marusic I (2010) Topology and lifetimes of flow topology in a turbulent boundary layer. Phys Fluids 22:015102

    Article  Google Scholar 

  11. Elsinga GE, Westerweel J (2010) Tomographic-PIV measurement of the flow around a zigzag boundary layer trip, p1592. In: Proceedings of 15th international symposium on applications of laser techniques to fluid Mechanics, Lisbon, Portugal, 05–08 July, 2010

  12. Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41: 933–947(15)

    Google Scholar 

  13. Elsinga GE, Kuik DJ, Oudheusden BW, Scarano F (2007) Investigation of the three-dimensional coherent structures in a turbulent boundary layer with Tomographic-PIV, AIAA 20071305; 45th AIAA aerospace sciences meeting and exhibit, 8–11 January 2007, Reno, Nevada

  14. Elsinga GE, Westerweel J, Scarano F, Novara M (2010) On the velocity of ghost particles and the bias errors in Tomographic-PIV. Exp Fluids, doi:10.1007/s00348-010-0930-0

  15. Foucaut J-M, Coudert S, Stanislas M, Delville J (2010) Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer. Exp Fluids, doi:10.2007/s00348-010-0928-7, Online July 15, 2010

  16. Ganapathisubramani B, Longmire EK, Marusic I (2003) Characteristics of vortex packets in turbulent boundary layers. J Fluid Mech 478:35–46

    Article  MATH  Google Scholar 

  17. Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524:57–80

    Article  MATH  Google Scholar 

  18. Gao Q, Ortiz-Duenas C, Longmire EK (2010) Eddy structure in turbulent boundary layers based on tomographic PIV, p1757. In: Proceedings of 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 05–08 July 2010

  19. Gerashchenko NS, Sharp S, Neuscamman S, Warhaft Z (2008) Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J Fluid Mech 617:255–281

    Article  MATH  Google Scholar 

  20. Guezennec YG (1989) Stochastic estimation of coherent structures in turbulent boundary layers. Phys Fluids A 1, 1054 (1989). doi:10.1063/1.857396

  21. Hambleton WT, Hutchins N, Marusic I (2006) Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer. J Fluid Mech 560:53–64

    Article  MATH  Google Scholar 

  22. Herpin S, Wong CY, Stanislas M, Soria J (2008) Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp Fluids 45:745–763

    Article  Google Scholar 

  23. Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Article  MATH  Google Scholar 

  24. Kähler CJ (2004) The significance of coherent flow structures for the turbulent mixing in wall-bounded flows, Dissertation, DLR Forschungsbericht 2004 -24, ISSN 1434-8454, or online publication at http://webdoc.sub.gwdg.de/diss/2004/kaehler/kaehler.pdf

  25. Krogstad P-Å, Kaspersen JH, Rimestad S (1998) Convection velocities in a turbulent boundary layer. Phys Fluids 10(4):949–957

    Article  Google Scholar 

  26. Lavezzo V, Soldati A, Gerashchenko S, Warhaft Z, Collins L (2009) Direct Numerical Simulation of inertial particle accelerations in near-wall turbulence: comparison with experiments. Webpaper: www.aidic.it/icheap9/webpapers/306Lavezzo.pdf

  27. Lee C, Yeo K, Choi J-I (2004) Intermittent nature of acceleration in near wall turbulence. Phys Rev Let 92:144502

    Article  Google Scholar 

  28. Lüthi B (2002) Some aspects of strain, vorticity and material element dynamics as measured with 3D Particle Tracking Velocimetry in a Turbulent Flow. Dissertation

  29. Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103

    Article  Google Scholar 

  30. Moin P (2009) Revisiting Taylor’s hypothesis. J Fluid Mech 640:1–4

    Article  MATH  MathSciNet  Google Scholar 

  31. Mordant N, Lévèque E, Pinton J-F (2009) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. Submitted to Phys Fluids

  32. Nickels T, Marusic I (2001) On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer. J Fluid Mech 448:367–385

    Article  MATH  Google Scholar 

  33. Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced MART for tomographic PIV. Meas Sci Technol 21:035401

    Article  Google Scholar 

  34. Robinson SK (1991) The kinematics of turbulent boundary layer structure. NASA Technical Memorandum, 103859

  35. Saikrishnan N, Marusic I, Longmire EK (2006) Assessment of dual plane PIV measurements in wall turbulence using DNS data. Exp Fluids 41:265–278

    Google Scholar 

  36. Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83

    Article  Google Scholar 

  37. Schanz D, Gesemann S, Schröder A, Wieneke B, Michaelis D (2010) Tomographic reconstruction with non-uniform optical transfer functions (OTF). In: Proceedings of 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 05-08 July, 2010, p 1709

  38. Schlatter P (2010) Vortical and large-scale structures in a turbulent boundary layer, Poster, Linné FLOW Centre, KTH Mechanics, Stockholm, Sweden, http://www.mech.kth.se/~pschlatt/DATA/README.html

  39. Schlatter P, Li Q, Brethouwer G, Johansson AV, Henningson DS (2010), Simulations of spatially evolving turbulent boundary layers up to Reθ = 4300. Int J Heat Fluid Flow. doi: 10.1016/j.ijheatfluidflow.2009.12.011

  40. Schoppa W, Hussain F (1997) Genesis and dynamics of coherent structures in near-wall turbulence. In Panton R (ed) Self-sustaining mechanisms of wall turbulence. Computational Mechanics Publications, pp 385–422

  41. Schröder A (2001) Untersuchung der Strukturen von künstlich angeregten transitionellen Plattengrenzschichtströmungen mit Hilfe der Stereo und multiplane particle image velocimetry. http://webdoc.sub.gwdg.de/diss/2001/schroeder/schroeder.pdf

  42. Schröder A, Kompenhans J (2004) Investigation of a turbulent spot using multi-plane stereo PIV. Exp Fluids 36:82–90 Selected issue

    Article  Google Scholar 

  43. Schröder A, Geisler R, Elsinga GE, Scarano F, Dierksheide U (2006) Investigation of a turbulent spot using time-resolved tomographic PIV., CD-Rom. Paper 1.4. In: Proceedings of 13th international symposium on applications of laser techniques to fluid mechanics, June 26–29, Lisbon (Portugal)

  44. Schröder A, Geisler R, Elsinga GE, Scarano F, Dierksheide U (2008) Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 44(2):305–316

    Article  Google Scholar 

  45. Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98

    Article  MATH  Google Scholar 

  46. Stanislas M, Perret L, Foucaut J-M (2008) Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J Fluid Mech 602:327–382

    Article  MATH  Google Scholar 

  47. Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond Ser A 164:476–490

    Article  Google Scholar 

  48. Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74

    Article  MATH  Google Scholar 

  49. Virant M, Dracos T (1997) 3D PTV and its application on Lagrangian motion. Meas Sci Technol 8:1539–1552

    Article  Google Scholar 

  50. Wieneke B (2007) Volume self-calibration for Stereo PIV and Tomographic PIV. In: Proceedings of PIV’07, Rome, 11–14 September 2007

  51. Yeo K, Kim B-G, Lee C (2010) On the near-wall characteristics of acceleration in turbulence. J Fluid Mech. doi:10.107/S00221120100002557

  52. Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Dr. I. Marusic for providing the hot-wire cross- spectra.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Schröder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schröder, A., Geisler, R., Staack, K. et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 50, 1071–1091 (2011). https://doi.org/10.1007/s00348-010-1014-x

Download citation

Keywords

  • Particle Image Velocimetry
  • Direct Numerical Simulation
  • Turbulent Boundary Layer
  • Particle Tracking Velocimetry
  • Particle Image Velocimetry Data