Skip to main content
Log in

An automated single-particle tracker: application to characterization of non-azimuthal motion in Couette flows at low Reynolds number

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We describe an experiment that allows us to record 3-dimensional trajectories of single particles in Couette shear flows, at low Reynolds number. The core of the apparatus is a Couette cell with transparent contra-rotating cylinders. Fluorescent spherical particles are used as tracers. A single tracer is imaged onto a webcam, equipped with a home-made autofocus system. For a given average shear rate, tracking of an individual tracer is performed automatically by driving the amount of contra-rotation between both cylinders and the position of the webcam. The performance of the tracker is illustrated through examples of trajectories of neutrally buoyant tracers in a Newtonian fluid. The setup is mostly aimed at characterizing complex flows in non-colloidal concentrated suspensions and wet granular materials. We show examples of 3d trajectories in a dense suspension of 200 μm spherical grains, revealing details of the short-scale diffusive-like particle motion, together with flow localization and large-scale non-azimuthal flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acrivos A, Mauri R, Fan X (1993) Shear-induced resuspension in a Couette device. Int J Multiphase Flow 19:797

    Article  MATH  Google Scholar 

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261

    Article  Google Scholar 

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:157

    Article  Google Scholar 

  • Andereck C, Liu S, Swinney H (1985) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155

    Article  Google Scholar 

  • Barentin B, Azanza E, Pouligny B (2004) Flow and segregation in sheared granular slurries. Europhys Lett 66:139

    Article  Google Scholar 

  • Benjamin TB (1978a) Bifurcation phenomena in steady flows of a viscous fluid I. Theory. Proc R Soc Lond A 359:1

    Article  MathSciNet  Google Scholar 

  • Benjamin TB (1978b) Bifurcation phenomena in steady flows of a viscous fluid II. Experiments. Proc R Soc Lond A 359:27

    Article  MathSciNet  Google Scholar 

  • Breedveld V, Van den Ende D, Tripathi A, Acrivos A (1998) The measurement of the shear-induced particle and fluid tracer diffusivities in concentrated suspensions by a novel method. J Fluid Mech 375:297

    Article  MATH  Google Scholar 

  • Conway SL, Shinbrot T, Glasser BJ (2004) A Taylor vortex analogy in granular flows. Nature 431:433

    Article  Google Scholar 

  • Coussot P, Ancey C (1999) Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E 59:4445

    Article  Google Scholar 

  • Czarny O, Serre E, Bontoux P (2003) Interaction between Ekman pumping and the centrifugal instability in Taylor-Couette flow. Phys Fluids 15:467

    Article  MathSciNet  Google Scholar 

  • Fardin MA, Lasne B, Cardoso O, Grégoire G, Argentina M, Decruppe JP, Lerouge S (2009) Taylor-like vortices in shear-banding flow of giant micelles. Phys Rev Lett 103:028302

    Article  Google Scholar 

  • Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J Fluid Mech 277:271

    Article  MATH  Google Scholar 

  • Guezennec YG, Brodkey RS, Trigui N, Kent JC (1994) Algorithms for fully automated particle tracking velocimetry. Exp Fluids 17:209

    Article  Google Scholar 

  • Guida A, Nienow AW, Barigou M (2010) PEPT measurements of solid–liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions. Chem Eng Sci 65:1905

    Article  Google Scholar 

  • Halow JS, Wills GB (1970) Experimental observations of sphere migration in Couette systems. Ind Eng Chem Fundam 9:603

    Article  Google Scholar 

  • Ho BP, Leal LG (1974) Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech 65:365

    Article  MATH  Google Scholar 

  • Hsu WY, Lee CS, Chen PJ, Chen NT, Chen FZ, Yu ZR, Kuo CH, Hwang CH (2009) Development of the fast astigmatic auto-focus microscope system. Meas Sci Technol 20:045902

    Article  Google Scholar 

  • Kao H, Verkman A (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291

    Article  Google Scholar 

  • Khosropour R, Zirinsky J, Pak HK, Behringer RP (1997) Convection and size segregation in a Couette flow of granular material. Phys Rev E 56:4467

    Article  Google Scholar 

  • Larson R (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213

    Article  Google Scholar 

  • Leighton D, Acrivos A (1986) Viscous resuspension. Chem Eng Sci 41:1377

    Article  Google Scholar 

  • Leighton D, Acrivos A (1987) Measurement of shear-induced self diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109

    Article  Google Scholar 

  • Lenoble M (2005) Ecoulement et ségrégation dans des pâtes granulaires modèle. PhD thesis Dissertation, Université Bordeaux 1. http://tel.archives-ouvertes.fr/tel-00011486/

  • Lenoble M, Snabre P, Pouligny B (2005) The flow of a very concentrated slurry in a parallel-plate device: influence of gravity. Phys Fluids 17:073303

    Article  Google Scholar 

  • Levi V, Ruan Q, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88:2919

    Article  Google Scholar 

  • López-González MR, Holmes WM, Callaghan PT, Photinos PJ (2006) Rheo-NMR phenomena of wormlike micelles. Soft Matter 2:855–869

    Article  Google Scholar 

  • Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318

    Article  Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of non-colloidal particles through MRI. J Rheol 50:259

    Article  Google Scholar 

  • Ovarlez G, Rodts S, Chateau X, Coussot P (2009) Phenomenology and physical origin of shear-localization and shear-banding in complex fluids. Rheol Acta 48:831

    Article  Google Scholar 

  • Parker DJ, Forster RN, Fowles P, Takhar PS (2002) Positron emission particle tracking using the new Birmingham positron camera. Nucl Inst Methods Phys Res A 477:540

    Article  Google Scholar 

  • Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 13:683

    Article  Google Scholar 

  • Peters IM, de Grooth BG, Schins JM, Figdor CG, Greve J (1998) Three dimensional single-particle tracking with nanometer resolution. Rev Sci Instrum 69:2762

    Article  Google Scholar 

  • Plantard G, Saadaoui H, Snabre P, Pouligny B (2006) Surface-roughness-driven segregation in a granular slurry under shear. Eur Phys Lett 75:335

    Article  Google Scholar 

  • Pralle A, Prummer M, Florin EL, Stelzer EHK, Hörber JKH (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378

    Article  Google Scholar 

  • Racca RG, Dewey JM (1988) A method for automatic particle tracking in a three-dimensional flow field. Exp Fluids 6:25

    Article  Google Scholar 

  • Sakaie K, Fenistein D, Carroll TJ, van Hecke M, Umbanhowar P (2008) MR imaging of Reynolds dilatancy in the bulk of smooth granular flows. Europhys Lett 84:38001

    Article  Google Scholar 

  • Shan XC, Hu C, Montiel D, Haw Y (2007) Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking. J Phys Chem C 111:32

    Article  Google Scholar 

  • Speidel M, Jonas A, Florin E (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28:69

    Article  Google Scholar 

  • Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond A 223:289

    Article  Google Scholar 

  • Wang P, Song C, Briscoe C, Makse A (2008) Particle dynamics and effective temperature of jammed granular matter in a slowly sheared 3D Couette cell. Phys Rev E 77:061309

    Article  Google Scholar 

  • Wiederseiner S (2010) Rheophysics of concentrated particle suspensions in a Couette cell using a refractive index matching technique. PhD thesis dissertation, Ecole Polytechnique Fédérale de Lausanne

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353

    Article  Google Scholar 

  • Wittmer S, Falk L, Pitiot P, Vivier H (1998) Characterization of stirred vessel hydrodynamics by three dimensional trajectography. Can J Chem Eng 76:600

    Article  Google Scholar 

  • Wu M, Roberts JW, Buckley M (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38:461

    Article  Google Scholar 

  • Zitoun KB, Sastry SK, Guezennec Y (2001) Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid-liquid flow using particle tracking velocimetry. Int J Multiphase Flow 27:1397

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Centre National de la Recherche Scientifique and Région Aquitaine through grant # 20091101007. We are grateful to CRPP Instrumentation and Mechanics group for their technical help, to F. Nadal for illuminating discussions on the physics of rotating fluids, and to B. Berge (Varioptic) for bringing our attention to the CD/DVD auto-focus system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pouligny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 3107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaj, O., Merzeau, P., Snabre, P. et al. An automated single-particle tracker: application to characterization of non-azimuthal motion in Couette flows at low Reynolds number. Exp Fluids 50, 1559–1570 (2011). https://doi.org/10.1007/s00348-010-1013-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-1013-y

Keywords

Navigation