Skip to main content
Log in

Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Computed tomographic X-ray velocimetry has been developed for simultaneous three-dimensional measurement of flow and vessel geometry. The technique uses cross-correlation functions calculated from X-ray projection image pairs acquired at multiple viewing angles to tomographically reconstruct the flow through opaque objects with high resolution. The reconstruction is performed using an iterative, least squares approach. The simultaneous measurement of the object’s structure is performed with a limited projection tomography method. An extensive parametric study using Monte Carlo simulation reveals accurate measurements with as few as 3 projection angles, and a minimum required scan angle of only 30°. When using a single/source detector system, the technique is limited to measurement of periodic or steady flow fields; however, with the use of a multiple source/detector system, instantaneous measurement will be possible. Synchrotron experiments are conducted to demonstrate the simultaneous measurement of structure and flow in a complex geometry with strong three-dimensionality. The technique will find applications in biological flow measurement, and also in engineering applications where optical access is limited, such as in mineral processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169

    Article  Google Scholar 

  • Azevedo SG, Schneberk DJ, Fitch JP, Martz HE (1990) Calculation of the rotational centers in computed tomography sinograms. IEEE Trans Nucl Sci 37:1525–1540

    Article  Google Scholar 

  • Barnhart DH, Adrian RJ, Papen GC (1994) Phase-conjugate holographic system for high-resolution particle-image velocimetry. Appl Opt 33:7159–7170

    Article  Google Scholar 

  • Berry MV, Gibbs DF (1970) Interpretation of optical projections. Proc R Soc Lond Ser A 314:143

    Article  Google Scholar 

  • Donath T, Beckmann F, Schreyer A (2006) Automated determination of the center of rotation in tomography data. J Opt Soc Am 23:1048–1053

    Article  Google Scholar 

  • Dubsky S, Jamison RA, Irvine SC, Siu KKW, Hourigan K, Fouras A (2010) Computed tomographic x-ray velocimetry. Appl Phys Lett 96:023702

    Article  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Fouras A, Soria J (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25:409–430

    Article  Google Scholar 

  • Fouras A, Dusting J, Lewis R, Hourigan K (2007) Three-dimensional synchrotron x-ray particle image velocimetry. J Appl Phys 102:064916

    Article  Google Scholar 

  • Fouras A, Kitchen MJ, Dubsky S, Lewis RA, Hooper SB, Hourigan K (2009) The past, present, and future of x-ray technology for in vivo imaging of function and form. J Appl Phys 105:102009

    Article  Google Scholar 

  • Fouras A, Lo Jacono D, Nguyen CV, Hourigan K (2009) Volumetric correlation PIV: a new technique for 3D velocity vector field measurement. Exp Fluids 47:569–577

    Article  Google Scholar 

  • Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    Article  Google Scholar 

  • Im KS, Fezzaa K, Wang YJ, Liu X, Wang J, Lai MC (2007) Particle tracking velocimetry using fast x-ray phase-contrast imaging. Appl Phys Lett 90:091919

    Article  Google Scholar 

  • Irvine SC, Paganin DM, Dubsky S, Lewis RA, Fouras A (2008) Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle. Appl Phys Lett 93(15):153901

    Article  Google Scholar 

  • Irvine SC, Paganin DM, Jamison A, Dubsky S, Fouras A (2010) Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle. Opt Express 18:2368–2379

    Article  Google Scholar 

  • Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Kertzscher U, Seeger A, Affeld K, Goubergrits L, Wellnhofer E (2004) X-ray based particle tracking velocimetry—a measurement technique for multi-phase flows and flows without optical access. Flow Meas Instrum 36:455–462

    Google Scholar 

  • Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23:86–94

    Article  Google Scholar 

  • Kim GB, Lee SJ (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41:195–200

    Article  Google Scholar 

  • Kim HB, Hertzberg JR, Shandas R (2004) Development and validation of echo PIV. Exp Fluids 36:455–462

    Article  Google Scholar 

  • Kitzhofer J, Brucker C (2010) Tomographic particle tracking velocimetry using telecentric imaging. Exp Fluids

  • Lee SJ, Kim GB (2003) X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J Appl Phys 94:3620–3623

    Article  Google Scholar 

  • Lee SJ, Jung SY, Ahn S (2010) Flow tracing microparticle sensors designed for enhanced X-ray contrast. Biosens Bioelectron 25:1571–1578

    Article  Google Scholar 

  • Lu J, Pereira F, Fraser SE, Gharib M (2008) Three-dimensional real-time imaging of cardiac cell motions in living embryos. J Biomed Opt 13(1):014006

    Article  Google Scholar 

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–U146

    Article  Google Scholar 

  • Niu L, Qian M, Wan K, Yu WT, Jin QF, Ling T, Gao S, Zheng HR (2010) Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation. Phys Med Biol 55:2103–2120

    Article  Google Scholar 

  • Poelma C, Vander Heiden K, Hierck BP, Poelmann RE, Westerweel J (2010) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7:91–103

    Article  Google Scholar 

  • Pereira F, Gharib M, Dabiri D, Modarress D (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Exp Fluids 29(7):S78–S84

    Article  Google Scholar 

  • Seeger A, Affeld K, Goubergrits L, Kertzscher U, Wellnhofer E (2001) X-ray-based assessment of the three-dimensional velocity of the liquid phase in a bubble column. Exp Fluids 31:193–201

    Article  Google Scholar 

  • Troolin DR, Longmire EK (2010) Volumetric velocity measurements of vortex rings from inclined exits. Exp Fluids 48:409–420

    Article  Google Scholar 

  • Vetel J, Garon A, Pelletier D (2009) Lagrangian coherent structures in the human carotid artery bifurcation. Exp Fluids 46:1067–1079

    Article  Google Scholar 

  • Wang YJ, Liu X, Im KS, Lee WK, Wang J, Fezzaa K, Hung DLS, Winkelman JR (2008) Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat Phys 4:305–309

    Article  Google Scholar 

  • Westerweel J (2008) On velocity gradients in PIV interrogation. Exp Fluids 44:831–842

    Article  Google Scholar 

  • Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37:375–384

    Article  Google Scholar 

  • Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338

    Article  Google Scholar 

  • Willert CE, Gharib M (1992) 3-Dimensional particle imaging with a single camera. Exp Fluids 12:353–358

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Japan Synchrotron Radiation Research Institute (JASRI) under Proposal Nos. 2009A0022 and 2009A1882. The authors would like to thank Prof. Naoto Yagi and Dr. Kentaro Uesugi of SPring-8/JASRI for their assistance with the experiments. Support from the Australian Research Council (Grant Nos. DP0877327, DP0987643) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dubsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubsky, S., Jamison, R.A., Higgins, S.P.A. et al. Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels. Exp Fluids 52, 543–554 (2012). https://doi.org/10.1007/s00348-010-1006-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-1006-x

Keywords

Navigation