Skip to main content
Log in

Dual leading-edge vortex structure for flow over a simplified butterfly model

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The dye visualization experiments show that a dual leading-edge vortex (LEV) structure exists on the suction side of a simplified butterfly model of Papilio ulysses at α = 8°−12°. Furthermore, the results of particle image velocimetry (PIV) measurement indicate that the axial velocity of the primary (outer) vortex core reaches the lower extreme value while a transition from a “wake-like” to a “jet-like” axial velocity profile occurs. The work reveals for the first time the existence of dual LEV structure on the butterfly-like forward-sweep wing configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

c :

Maximum chord length

d :

Distance from X′–Z′ coordinates plane to the left apex of the model

L :

Maximum span length

LEV:

Leading-edge vortex

MAVs:

Micro air vehicles

PIV:

Particle image velocimetry

Re :

Reynolds number

S :

Span of the X′–Z′ coordinates plane over the left forewing of the model

U :

Free-stream velocity

U core :

Mean axial velocity

WTV:

Wing-tip vortex

XY:

Coordinates plane of the top view

X′–Z′:

Coordinates plane of the section view

α :

Angle of attack

β :

Angle of sideslip

References

  • Backenbury JH (1991) Kinematics of take-off and climbing fight in butterflies. J Zool Lond 244:251–270

    Article  Google Scholar 

  • Betts CR, Wootton RJ (1988) Wing shape and fight behavior in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. J Exp Biol 138:271–288

    Google Scholar 

  • Breitsamter C, Laschka B (2001) Vortical flowfield structure at forward swept-wing configurations. J Aircr 38(2):193–207

    Article  Google Scholar 

  • Chen L, Wang JJ, Zuo LX, Feng LH (2010) Vortex flows over 50° swept delta wing at low Reynolds number. Acta Aerodynamica Sinica 28:174–179 (in Chinese)

    Google Scholar 

  • Dudley R (1990) Biomechanics of flight in Neotropical butterflies: morphometrics and kinematics. J Exp Biol 150:37–53

    Google Scholar 

  • Gordnier R, Visbal M (2003) Higher–order compact difference scheme applied to the simulation of a low sweep delta wing flow. AIAA Paper: 2003–620

  • Hu Y, Wang JJ (2010) Experimental investigation on aerodynamic performance of gliding butterflies. AIAA J 48(10):2454–2457

    Article  Google Scholar 

  • Hu Y, Wang JJ, Zhang PF, Zhang C (2009) Experimental investigation on the flow structure over a simplified Papilio ulysses model. Chin Sci Bull 54:1026–1031

    Article  Google Scholar 

  • Hu Y, Wang JJ, Zhang C, Zhang PF (2010) Shape of a butterfly wing affects flow structures. Acta Aerodynamica Sinica 28:138–142 (in Chinese)

    Google Scholar 

  • Lu Y, Shen GX, Lai GJ (2006) Dual leading-edge vortices on flapping wings. J Exp Biol 209:5005–5016

    Article  Google Scholar 

  • Okamoto M, Sunada S, Tokutake H (2009) Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus. J Exp Biol 257:191–202

    Google Scholar 

  • OL M, Gharib M (2003) Leading–edge vortex structure of nonslender delta wings at low Reynolds number. AIAA J 41(1):16–26

    Article  Google Scholar 

  • Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096

    Google Scholar 

  • Senda K, Sawamoto M, Shibahara T, Tanaka T (2004) Study on flapping of wings flight of butterfly with experimental measurement. AIAA Paper: 2004–5368

  • Srygley RB, Thomas ALR (2002) Unconventional lift–generating mechanisms in free–flying butterflies. Nature 420:660–664

    Article  Google Scholar 

  • Taylor GS, Schnorbus T, Gursul I (2003) An investigation of vortex flows over low sweep delta wings. AIAA Paper: 2003–4021

  • Traub LW, Lawrence J (2009) Aerodynamic characteristics of forward and aft swept arrow wings. J Aircr 46(4):1454–1457

    Article  Google Scholar 

  • Wang JJ, Tu JQ (2010) Effect of wing planform on leading-edge vortex structures. Chin Sci Bull 55:120–123

    Google Scholar 

  • Wang JJ, Zhang W (2008) Experimental investigations on leading–edge vortex structures for flow over non–slender delta wings. Chinese Phys Lett 25:2550–2553

    Article  Google Scholar 

  • Wang JJ, Zhao X, Liu WC, Tu JQ (2007) Experimental investigation on flow structures over nonslender delta wings at low Reynolds numbers. Journal of Experiments in Fluid Mechanics 21:1–7 (in Chinese)

    Google Scholar 

  • Zbikowski R (2002) On aerodynamic modeling of an insect–like flapping wing in hover for micro air vehicles. Philos Trans R Soc Lond 360:273–290

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under grant No. 10425207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Wang, J.J. Dual leading-edge vortex structure for flow over a simplified butterfly model. Exp Fluids 50, 1285–1292 (2011). https://doi.org/10.1007/s00348-010-0990-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0990-1

Keywords

Navigation