Skip to main content
Log in

Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An online measurement technique for drop size distribution in stirred tank reactors is needed but has not yet been developed. Different approaches and different techniques have been published as the new standard during the last decade. Three of them (focus beam reflectance measurement, two-dimensional optical reflectance measurement techniques and a fiber optical FBR sensor) are tested, and their results are compared with trustful image analysis results from an in situ microscope. The measurement of drop sizes in liquid/liquid distribution is a major challenge for all tested measurement probes, and none provides exact results for the tested system of pure toluene/water compared to an endoscope. Not only the size analysis but also the change of the size over time gives unreasonable results. The influence of the power input on the drop size distribution was the only reasonable observation in this study. The FBR sensor was not applicable at all to the used system. While all three probes are based on laser back scattering, the general question of the usability of this principle for measuring evolving drop size distributions in liquid/liquid system is asked. The exterior smooth surface of droplets in such systems is leading to strong errors in the measurement of the size of the drops. That leads to widely divergent results. A different measurement principle should be used for online measurements of drop size distributions than laser back scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

CLD:

Chord length distribution

DSD:

Drop size distribution

FBR:

Forward–backward ratio

FBRM:

Focus beam reflectance measurement

fps:

Frames per second

ORM:

Optical reflectance measurement

PSD:

Particle size distribution

D :

Stirrer diameter (m)

d 32 :

Sauter mean diameter (m)

d l,B :

Immersion depth of baffles (m)

d P :

Particle diameter (m)

d Max :

Maximum measurable particle diameter (m)

H :

Liquid level of the tank (m)

h :

Distance between stirrer and tank bottom (m)

l C :

Chord length (m)

N :

Stirrer speed (rpm)

n :

Refractive index (−)

P/V:

Power input (W/m³)

Po:

Power number

Q 0 :

Cumulative number distribution (−)

q 0 :

Number density distribution (1/m)

q 3 :

Volume density distribution (1/m)

T :

Tank diameter (m)

t :

Temperature (°C)

t S :

Scanning time of one particle (s)

v S :

Scanning velocity of the laser focal point (m/s)

w B :

Width of baffles (m)

w Tip :

Tip velocity of the stirrer (m/s)

γ:

Interfacial tension (mN/m)

η:

Dynamic viscosity (mPa s)

ρ:

Density (kg/m³)

σ:

Standard deviation (%)

φ:

Dispersed-phase fraction (−)

References

  • Andrès C, Réginault P, Rochat MH, Chaillot B, Pourcelot Y (1996) Particle-size distribution of a powder: comparison of three analytical techniques. Int J Pharm 144(2):141–146

    Article  Google Scholar 

  • Bae JH, Tavlarides LL (1989) Laser capillary spectrophotometry for drop-size concentration measurements. AIChE J 35(7):1073–1084

    Article  Google Scholar 

  • Barrett P, Glennon B (2002) Characterizing the metastable zone width and solubility curve using lasentec FBRM and PVM. Chem Eng Res Des 80(A7):799–805

    Article  Google Scholar 

  • Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7(1–2):21–41

    Article  Google Scholar 

  • Boxall JA, Koh CA, Sloan ED, Sum AK, Wu DT (2010) Measurement and calibration of droplet size distributions in water-in-oil emulsions by particle video microscope and a focused beam reflectance method. Ind Eng Chem Res 49(3):1412–1418

    Article  Google Scholar 

  • Bürkholz A, Polke R (1984) Laser diffraction spectrometers/experience in particle size analysis. Part Charact 1:153–160

    Article  Google Scholar 

  • Chylek P, Kiehl JT, Ko MKW (1978) Narrow resonance structure in Mie scattering characteristics. Appl Opt 17(19):3019–3021

    Article  Google Scholar 

  • Cull SG, Lovick JW, Lye GJ, Angeli P (2002) Scale-down studies on the hydrodynamics of two-liquid phase biocatalytic reactors. Bioprocess Biosyst Eng 25(3):143–153

    Article  Google Scholar 

  • Desnoyer C, Masbernat O, Gourdon C (2003) Experimental study of drop size distributions at high phase ratio in liquid–liquid dispersions. Chem Eng Sci 58(7):1353–1363

    Article  Google Scholar 

  • Fournier CO, Fradette L, Tanguy PA (2009) Effect of dispersed phase viscosity on solid-stabilized emulsions. Chem Eng Res Des 87(4A):499–506

    Article  Google Scholar 

  • Fricke M, Voigt A, Sundmacher K (2007) Droplet size distribution of technical macroemulsions: variation of process parameters. In: Proceedings of International Congress for Particle Technology, Nuremberg, 27–29 March 2007, 4 pp

  • Gäbler A, Wegener M, Paschedag AR, Kraume M (2006) The effect of pH on experimental and simulation results of transient drop size distributions in stirred liquid-liquid dispersions. Chem Eng Sci 61(9):3018–3024

    Article  Google Scholar 

  • Greaves D, Boxall J, Mulligan J, Montesi A, Creek J, Sloan ED, Koh CA (2008) Measuring the particle size of a known distribution using the focused beam reflectance measurement technique. Chem Eng Sci 63(22):5410–5419

    Article  Google Scholar 

  • Hay KJ, Liu ZC, Hanratty TJ (1998) A backlighted imaging technique for particle size measurements in two-phase flows. Exp Fluids 25(3):226–232

    Article  Google Scholar 

  • Heath AR, Fawell PD, Bahri PA, Swift JD (2002) Estimating average particle size by focused beam reflectance measurement (FBRM). Part Part Syst Char 19(2):84–95

    Article  Google Scholar 

  • Hu B, Angeli P, Matar OK, Lawrence CJ, Hewitt GF (2006) Evaluation of drop size distribution from chord length measurements. AIChE J 52(3):931–939

    Article  Google Scholar 

  • Hurlburt ET, Hanratty TJ (2002) Measurement of drop size in horizontal annular flow with the immersion method. Exp Fluids 32(6):692–699

    Google Scholar 

  • Kail N, Marquardt W, Briesen H (2009) Process analysis by means of focused beam reflectance measurements. Ind Eng Chem Res 48(6):2936–2946

    Article  Google Scholar 

  • Kraume M, Gäbler A, Schulze K (2004) Influence of physical properties on drop size distributions of stirred liquid–liquid dispersions. Chem Eng Technol 27(3):330–334

    Article  Google Scholar 

  • Li MZ, Wilkinson D (2005) Determination of non-spherical particle size distribution from chord length measurements. Part 1: theoretical analysis. Chem Eng Sci 60(12):3251–3265

    Article  Google Scholar 

  • Li MZ, Wilkinson D, Patchigolla K (2005) Comparison of particle size distributions measured using different techniques. Part Sci Technol 23(3):265–284

    Article  MATH  Google Scholar 

  • Lovick J, Mouza AA, Paras SV, Lye GJ, Angeli P (2005) Drop size distribution in highly concentrated liquid–liquid dispersions using a light back scattering method. J Chem Tech Biotech 80(5):545–552

    Article  Google Scholar 

  • Martinez-Bazan C, Montanes JL, Lasheras JC (1999) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J Fluid Mech 401:157–182

    Article  MATH  Google Scholar 

  • McDonald KA, Jackman AP, Hurst S (2001) Characterization of plant suspension cultures using the focused beam reflectance technique. Biotechnol Lett 23(4):317–324

    Article  Google Scholar 

  • Misek T, Berger R, Schröter J (1985) Standard test systems for liquid extraction, 2nd edn. EFCE Publications, Series 43

  • O’Rourke AM, MacLoughlin PF (2005) A comparison of measurement techniques used in the analysis of evolving liquid–liquid dispersions. Chem Eng Process 44(8):885–894

    Article  Google Scholar 

  • Pacek AW, Nienow AW (1995) Measurement of drop size distribution in concentrated liquid–liquid dispersions—video and capillary techniques. Chem Eng Res Des 73(A5):512–518

    Google Scholar 

  • Pacek AW, Moore IPT, Nienow AW, Calabrese RV (1994) Video technique for measuring dynamics of liquid–liquid dispersion during phase inversion. AIChE J 40(12):1940–1949

    Article  Google Scholar 

  • Ritter J (2002) Dispergierung und Phasentrennung in gerührten Flüssig/flüssig-Systemen. Ph.D. Thesis, Technische Universität Berlin, 169 pp (in German)

  • Ritter J, Kraume M (2000) On-line measurement technique for drop size distributions in liquid/liquid systems at high dispersed phase fractions. Chem Eng Technol 23(7):579–582

    Article  Google Scholar 

  • Ruf A, Worlitschek J, Mazzotti M (2000) Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Char 17(4):167–179

    Article  Google Scholar 

  • Sachweh B, Heffels C, Polke R, Rädle M (1998) Light scattering sensor for in-line measurements of mean particle sizes in suspensions. In: Proceedings of 7th European Symposium Particle Characteristics, Nuremberg, pp 635–644

  • Simmons MJH, Zaidi SH, Azzopardi BJ (2000) Comparison of laser-based drop-size measurement techniques and their application to dispersed liquid–liquid pipe flow. Opt Eng 39(2):505–509

    Article  Google Scholar 

  • Tadayyon A, Rohani S (1998) Determination of particle size distribution by Par-Tec (R) 100: modeling and experimental results. Part Part Syst Char 15(3):127–135

    Article  Google Scholar 

  • van de Hulst HC (1981) Light scattering by small particles—structure of matter series. Dover Publications, New York, p 470

    Google Scholar 

  • Wollny S, Sperling R, Heun G, Ritter J, Maaß S, Kraume M (2008) Bestimmung von Tropfengrößenverteilungen zur Charakterisierung von Rührorganen hinsichtlich der Partikelbeanspruchung. In: Proceedings of ProcessNet Partikelmesstechnik, München, 10–14 March 2008, 2 pp (in German)

  • Worlitschek J, Hocker T, Mazzotti M (2005) Restoration of PSD from chord length distribution data using the method of projections onto convex sets. Part Part Syst Char 22(2):81–98

    Article  Google Scholar 

  • Yu ZQ, Chow PS, Tan RBH (2008) Interpretation of focused beam reflectance measurement (FBRM) data via simulated crystallization. Org Process Res Dev 12(4):646–654

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Bayer Technology Services GmbH and especially Dr. Joachim Ritter, who gave the basic ideas for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maaß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maaß, S., Wollny, S., Voigt, A. et al. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions. Exp Fluids 50, 259–269 (2011). https://doi.org/10.1007/s00348-010-0918-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0918-9

Keywords

Navigation