Skip to main content

Two-component Doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model

Abstract

This study discusses the development and application of planar laser-induced fluorescence of nitric oxide (NO PLIF) to measure velocities in an axisymmetric hypersonic near-wake flow field around a model planetary-entry vehicle configuration. Shapes and positions of NO spectral lines at every location in the flow are determined over several successive shock tunnel runs. The lines experience Doppler shifts proportional to the local flow velocity component in the direction of the fluorescence-generating laser. A Gaussian line shape function is then fitted to the acquired wavelength-dependent fluorescence measurements, the line center of which is correlated to the time-averaged velocity at each pixel location. The flow field is probed successively by a laser in two orthogonal directions, which yields the velocity magnitude and direction everywhere in the illuminated plane. The accuracy of the measurement technique is discussed, and various strategies to characterize systematic errors are presented. The variation of random uncertainties in different regions of the flow field provides information about the local steadiness of the flow. To the authors’ knowledge, the measurements represent the first two-component velocity map of a hypersonic near-wake flow.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Allen M, Kessler W, Legner H, McManus K, Mulhall P, Parker T, Sonnenfroh D (1994) Velocity field imaging in supersonic reacting flows near atmospheric pressure. AIAA J 32(8):1676–1682

    Article  Google Scholar 

  • Barker PF, Thomas AM, McIntyre TJ (1998) Velocimetry and thermometry of supersonic flow around a cylindrical body. AIAA J 36(6):1055–1060

    Article  Google Scholar 

  • Behrens W, Ko DRS (1971) Experimental studies in wakes of two-dimensional slender bodies at hypersonic speeds. AIAA J 9(5):851–857

    Article  Google Scholar 

  • Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  • Cecil E, McDaniel JC (2005) Planar velocity and temperature measurements in rarefied hypersonic flow using iodine LIF. In: 38th AIAA thermophysics conference, AIAA Paper 2005-4695, June 6–9, Toronto

  • Chang AY, DiRosa MD, Hanson RK (1992) Temperature dependence of collision broadening and shift in the NO \({\rm A} \longleftarrow {\rm X}(0,0)\) band in the presence of argon and nitrogen. J Quant Spectrosc Radiat Heat Transf 47(5):375–390

    Article  Google Scholar 

  • Danckert A, Legge H (1996) Experimental and computational wake structure study for a wide-angle cone. J Spacecr Rockets 33(4):476–482

    Article  Google Scholar 

  • Danehy PM, Mere P, Gaston MJ, O’Byrne S, Palma PC, Houwing AFP (2001) Fluorescence velocimetry of the hypersonic separated flow over a cone. AIAA J 39:1320–1328

    Article  Google Scholar 

  • Danehy PM, O’Byrne S, Houwing AFP, Fox JS, Smith DR (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41(2):263–271

    Article  Google Scholar 

  • Danielak J, Domin U, Kepa R, Rytel M, Zachwieja M (1997) Reinvestigation of the emission γ band system (A2Σ+–X2Π) of the NO molecule. J Mol Spectrosc 181:394–402

    Article  Google Scholar 

  • Dewey CF (1965) Near wake of a blunt body at hypersonic speeds. AIAA J 3(6):1001–1010

    Article  Google Scholar 

  • Di Rosa MD (1996) High-resolution line shape spectroscopy of transitions in gamma bands of nitric oxide. Ph.D. thesis, Department of Mechanical Engineering, Stanford University

  • Di Rosa MD, Hanson RK (1994) Collision broadening and shift of NO γ (0,0) absorption lines by O2 and H2O at high temperatures. J Quant Spectrosc Radiat Heat Trans 52(5):515–529

    Article  Google Scholar 

  • Donohue JM, McDaniel Jr JC (1996a) Complete three-dimensional multiparameter mapping of a supersonic ramp fuel injector flowfield. AIAA J 34(3):455–462

    Article  Google Scholar 

  • Donohue JM, McDaniel Jr JC (1996b) Computer-controlled multiparameter flowfield measurements using planar laser-induced iodine fluorescence. AIAA J 34(8):1604–1611

    Article  Google Scholar 

  • Earls LT (1935) Intensities in 2Π–2Σ transitions in diatomic molecules. Phys Rev 48:423–424

    Article  Google Scholar 

  • Engleman R, Rouse PE, Peek HM, Balamonte VD (1970) Beta and gamma band systems of nitric oxide. Technical Report Los Alamos Report LA-4364, Jet Propulsion Laboratory, California Institute of Technology

  • Freedman R, Nicholls RW (1980) Molecular constants for the v″ = 0X2Π and v′ = 0, 1 A2Σ levels of the NO molecule and its isotopes. J of Molecular Spectroscopy 83:223–227

    Article  Google Scholar 

  • Gai SL (1992) Free piston shock tunnels: development and capabilities. Prog Aerosp Sci 29(1):1–41

    Article  MathSciNet  Google Scholar 

  • Gnoffo PA (1999) Planetary-entry gas dynamics. Annu Rev Fluid Mech 31:459–494

    Article  Google Scholar 

  • Hartfield Jr RJ, Hollo SD, McDaniel JC (1993) Planar measurement technique for compressible flows using laser-induced iodine fluorescence. AIAA J 31(3):483–490

    Article  Google Scholar 

  • Herrin JL, Dutton JC (1994) Supersonic base flow experiments in the near wake of a cylindrical body. AIAA J 32(1):77–83

    Article  Google Scholar 

  • Hiller B, Hanson RK (1988) Simultaneous planar measurements of velocity and pressure fields in gas flows using laser induced fluorescence. Appl Opt 27(1):33–48

    Article  Google Scholar 

  • Hiller B, McDaniel JC, Rea EC, Hanson RK (1983) Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows. Opt Lett 8(9):474–476

    Article  Google Scholar 

  • Holden MS (1971) Establishment time of laminar separated flows. AIAA J 9(11):2296–2298

    Article  Google Scholar 

  • Hruschka R, O’Byrne S, Kleine H (2008) Diode-laser-based near-resonantly enhanced flow visualisation in shock tunnels. Appl Opt 47(24):4352–4360

    Article  Google Scholar 

  • Hruschka R, Park G, O’Byrne S, Kleine H (2009) Optical investigation of transient phenomena in hypersonic shock tunnels. In: Proceedings of SPIE, volume 7126, 28th international congress on high-speed imaging and photonics, Canberra, November 2008

  • Hsu AG, Srinivasan R, Bowersox RDW, North SW (2009a) Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowflield. AIAA J 47(11):2597–2604

    Article  Google Scholar 

  • Hsu AG, Srinivasan R, Bowersox RDW, North SW (2009b) Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield. Appl Opt 48(22):4414–4423

    Article  Google Scholar 

  • Humble RA, Scarano R, van Oudheusden BW (2007) Unsteady flow organisation of compressible planar base flows. Phys Fluids 19(7):076,101–076,101–17

    Google Scholar 

  • Kastengren AL, Dutton JC (2005) Large structure topology in a three-dimensional supersonic base flow. AIAA J 43(5):1053–1063

    Article  Google Scholar 

  • Lees L (1964) Hypersonic wakes and trails. AIAA J 2(3):417–528

    MATH  Article  MathSciNet  Google Scholar 

  • Luque J, Crosley DR (1999) Lifbase: database and spectral simulation program (version 1.5), SRI international report MP 99-009(1999), http://www.sri.com/psd/lifbase/

  • Martellucci A, Trucco H, Agnone A (1966) Measurements of the turbulent near wake of a cone at Mach 6. AIAA J 4(3):385–391

    Article  Google Scholar 

  • McIntosh MK (1968) Computer program for the numerical calculation of frozen and equilibrium conditions in shock tunnels. Technical report, Australian National University

  • McDaniel JC, Hiller B, Hanson RK (1983) Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence. Opt Lett 8(1):51–53

    Article  Google Scholar 

  • Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  • Mitcheltree RA, DiFulvio M, Horvath TJ, Braun RD (1999) Aerothermal heating predictions for mars microprobe. J Spacecr Rockets 36(3):405–411

    Article  Google Scholar 

  • Mundt C, Boyce R, Jacobs P, Hannemann K (2007) Validation study of numerical simulations by comparison to measurements in piston-driven shock tunnels. Aerosp Sci Technol 11:100–109

    Article  Google Scholar 

  • Murman EM (1969) Experimental studies of a laminar hypersonic cone wake. AIAA J 7(9):1724–1730

    Article  MathSciNet  Google Scholar 

  • Naik SV, Kulatilaka WD, Venkatesan KK, Lucht RP (2009) Pressure, temperature, and velocity measurements in underexpanded jets using laser-induced fluorescence imaging. AIAA J 47(4):839–849

    Article  Google Scholar 

  • O’Byrne S (2002) Hypersonic laminar boundary layers and near-wake flows. PhD thesis, Department of Physics, Australian National University

  • O’Byrne S, Danehy PM, Houwing AFP (2006) Investigation of hypersonic nozzle flow uniformity using NO fluorescence. Shock Waves 15(2):81–87

    Article  Google Scholar 

  • Palmer JL (1997) Temporally resolved velocimetry in a shock-tunnel free jet by planar fluorescence imaging of nitric oxide. Ph.D. thesis, Department of mechanical engineering, Stanford University

  • Paul PH (1997) Calculation of transition frequencies and rotational line strengths in the γ bands of nitric oxide. J Quant Spectrosc Radiat Heat Transf 57(5):581–589

    Article  Google Scholar 

  • Paul PH, Lee MP, Hanson RK (1989) Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO. Opt Lett 14(9):417–419

    Article  Google Scholar 

  • Ruffin SM (1993) Vibrational relaxation times in expanding flows. J Spacecr Rockets 30(1):59–68

    Article  Google Scholar 

  • Scarano F, van Oudheusden BW (2003) Velocity measurements of a two-dimensional compressible wake. Exp Fluids 34:430–441

    Google Scholar 

  • Slattery RE, Clay WG (1962) Laminar-turbulent transition and subsequent motion behind hypervelocity spheres. ARS J 32:1427–1429

    Google Scholar 

  • Todisco A, Pallone AJ (1965) Near wake flow field measurements. AIAA J 3(11):2075–2080

    Article  Google Scholar 

  • Vardavas IM (1984) Modelling reactive gas flows within shock tunnels. Aust J Phys 37:157–177

    Google Scholar 

  • Vincenti WG, Kruger CH (1965) Introduction to physical gas dynamics, 1st edn. Wiley, New York

    Google Scholar 

  • Washburn WK, Goldburg A, Melcher BW (1964) Hypersonic cone wake velocities obtained from streak pictures. AIAA J 2(8):1465–1467

    Article  Google Scholar 

  • Zimmermann M, Miles RB (1980) Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter. Appl Phys Lett 37(10):885–887

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council under discovery project DP0666941. Furthermore, we thank G. Foppoli and P. Walsh for their technical support and G. A. Bird for letting us use his DS2V DSMC code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hruschka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hruschka, R., O’Byrne, S. & Kleine, H. Two-component Doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model. Exp Fluids 48, 1109–1120 (2010). https://doi.org/10.1007/s00348-009-0794-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0794-3

Keywords

  • Flow Field
  • Particle Image Velocimetry
  • Laser Sheet
  • Shock Tunnel
  • Axial Velocity Component