Skip to main content
Log in

High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m/s) is explored using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation. High-frequency actuation, referred to here as quasi-steady forcing, slightly delays separation while lengthening and flattening the separated region without drastically increasing the measured lift. The actuator is found to be most effective for increasing lift when operated in an unsteady fashion at the natural oscillation frequency of the trailing edge flow field. Results indicate that the primary control mechanism in this configuration is an enhancement of the natural vortex shedding that promotes further momentum transfer between the freestream and separated region. Based on these results, different modulation waveforms for creating unsteady DBD plasma-induced flows are investigated in an effort to improve control authority. Subsequent measurements show that modulation using duty cycles of 50–70% generates stronger velocity perturbations than sinusoidal modulation in quiescent conditions at the expense of an increased power requirement. Investigation of these modulation waveforms for trailing edge separation control similarly shows that additional increases in lift can be obtained. The dependence of these results on the actuator carrier and modulation frequencies is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abe T, Takizawa Y, Sato S, Kimura N (2008) Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. AIAA J 46:2248–2256

    Article  Google Scholar 

  • Amitay M, Glezer A (2002) Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J 40:209–216

    Article  Google Scholar 

  • Becker R, King R, Petz R, Nitsche W (2007) Adaptive closed-loop separation control on a high-lift configuration using extremum seeking. AIAA J 45:1382–1392

    Article  Google Scholar 

  • Benard N, Jolibois J, Forte M, Touchard G, Moreau E (2007) Control of an axisymmetric subsonic air jet by plasma actuator. Exp Fluids 43:603–616

    Article  Google Scholar 

  • Benard N, Balcon N, Moreau E (2009a) Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity. AIAA paper 2009-0488

  • Benard N, Jolibois J, Moreau E (2009b) Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. J Electrostat 67:133–139

    Article  Google Scholar 

  • Bendat J, Piersol A (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Boucinha V, Magnier P, Leroy-Chesneau A, Weber R, Joussot R, Dong B, Hong D (2008) Characterization of the ionic wind induced by a Sine DBD actuator used for laminar-to-turbulent transition delay. AIAA Paper 2008-4210

  • Chan S, Zhang X, Gabriel S (2007) Attenuation of low-speed flow-induced cavity tones using plasma actuators. AIAA J 45:1525–1538

    Article  Google Scholar 

  • Corke T, Post M, Orlov D (2007) SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerosp Sci 43:193–217

    Article  Google Scholar 

  • Corke T, Post M, Orlov D (2009) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46:1–26

    Article  Google Scholar 

  • Darabi A, Wygnanski I (2004) Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J Fluid Mech 510:105–129

    Article  MATH  Google Scholar 

  • Enloe C, McLaughlin T, VanDyken R, Kachner K, Jumper E, Corke T (2004a) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42:589–594

    Article  Google Scholar 

  • Enloe C, McLaughlin T, VanDyken R, Kachner K, Jumper E, Corke T, Post M, Haddad O (2004b) Mechanisms and responses of a single dielectric barrier plasma actuator: geometric effects. AIAA J 42:595–604

    Article  Google Scholar 

  • Enloe C, McLaughlin T, Font G, Baughn J (2006) Parameterization of temporal structure in the single-dielectric-barrier aerodynamic plasma actuator. AIAA J 44:1127–1136

    Article  Google Scholar 

  • Enloe C, McHarg M, McLaughlin T (2008) Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. Journal of Applied Physics 103:073302

    Article  Google Scholar 

  • Falkenstein Z, Coogan J (1997) Microdischarge behaviour in the silent discharge of nitrogen oxygen and water air mixtures. J Phys D Appl Phys 30:817–825

    Article  Google Scholar 

  • Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43:917–928

    Article  Google Scholar 

  • Freeman A, Catrakis H (2008) Direct reduction of aero-optical aberrations by large structure suppression control in turbulence. AIAA J 46:2582–2590

    Article  Google Scholar 

  • Gad-el-Hak M, Bushnell D (1991) Separation control: review. J Fluid Eng 113:5–29

    Article  Google Scholar 

  • Glezer A, Amitay M, Honohan A (2005) Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J 43:1501–1511

    Article  Google Scholar 

  • Greenblatt D (2007) Dual location separation control on a semispan wing. AIAA J 45:1848–1860

    Article  Google Scholar 

  • Greenblatt D, Wygnanski I (2000) The control of flow separation by periodic excitation. Prog Aerosp Sci 36:487–545

    Article  Google Scholar 

  • Greenblatt D, Wygnanski I (2003) Effect of leading-edge curvature on airfoil separation control. J Airc 40:473–481

    Article  Google Scholar 

  • Greenblatt D, Goksel B, Rechenberg I, Schule C, Romann D, Paschereit C (2008a) Dielectric barrier discharge flow control at very low flight reynolds numbers. AIAA J 46:1528–1541

    Article  Google Scholar 

  • Greenblatt D, Kastantin Y, Nayeri CN, Paschereit CO (2008b) Delta-wing flow control using dielectric barrier discharge actuators. AIAA J 46:1554–1560

    Article  Google Scholar 

  • He C, Corke T, Patel M (2009) Plasma flaps and slats: an application of weakly ionized plasma actuators. J Airc 46:864–873

    Article  Google Scholar 

  • Hoskinson A, Hershkowitz N, Ashpis D (2008) Force measurements of single and double barrier DBD plasma actuators in quiescent air. J Phys D Appl Phys 41:1–9

    Article  Google Scholar 

  • Huang J, Corke T, Thomas F (2006) Plasma actuators for separation control of low-pressure turbine blades. AIAA J 44:51–57

    Article  Google Scholar 

  • Jayaraman B, Shyy W (2008) Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog Aerosp Sci 44:139–191

    Article  Google Scholar 

  • Jolibois J, Forte M, Moreau E (2008) Application of an AC barrier discharge actuator to control airflow Separation above a NACA 0015 airfoil: optimization of the actuation location along the chord. Journal of Electrostatics 66:496–503

    Article  Google Scholar 

  • Kiedaisch J, Nagib H, Demanett B (2006) Active flow control applied to high-lift airfoils utilizing simple flaps. AIAA Paper 2006-2856

  • Kim W, Do H, Mungal G, Cappelli M (2007) On the role of oxygen in dielectric barrier discharge actuation of aerodynamic flows. Appl Phys Lett 91:181501–181503

    Article  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  Google Scholar 

  • Likhanskii A, Shneider M, Macheret S, Miles R (2007) Optimization of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses. AIAA Paper 2007-0633

  • Lin J, Dominik C (1997) Parametric investigation of a high-lift airfoil at high reynolds numbers. J Airc 34:485–491

    Article  Google Scholar 

  • Little J, Nishihara M, Adamovich I, Samimy M (2008) Separation control from the flap of a high-lift airfoil using dbd plasma actuation. AIAA Paper 2008-4200

  • Little J, Nishihara M, Adamovich I, Samimy M (2009) Separation control from the flap of a high-lift airfoil using DBD plasma actuators. AIAA Paper 2009-0145

  • Mabe J, Calkins F, Wesley B, Woszidlo R, Taubert L, Wygnanski I (2009) Single dielectric barrier discharge plasma actuators for improved airfoil performance. J Airc 46:847–855

    Article  Google Scholar 

  • Melton L, Yao C-S, Seifert A (2004) Application of excitation from multiple locations on a simplified high-lift system. AIAA Paper 2004-2324

  • Melton L, Schaeffler N, Yao C-S, Seifert A (2005) Active control of flow separation from supercritical airfoil leading-edge flap shoulder. J Airc 42:1142–1149

    Article  Google Scholar 

  • Melton L, Yao C-S, Seifert A (2006) Active control of separation from the flap of a supercritical airfoil. AIAA J 44:34–41

    Article  Google Scholar 

  • Melton L, Schaeffler N, Lin J (2007) High-lift system for a supercritical airfoil: simplified by active flow control. AIAA Paper 2007-0707

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Phys 40:605–636

    Article  Google Scholar 

  • Opaits D, Neretti G, Likhanskii A, Zaidi S, Shneider M, Miles R, Macheret S (2007) Experimental investigation of DBD plasma actuators driven by repetitive high voltage nanosecond pulses with DC or low-frequency sinusoidal bias. AIAA Paper 2007-4532

  • Patel M, Sowle Z, Corke T, He C (2007) Autonomous sensing and control of wing stall using a smart plasma slat. J Airc 44:516–527

    Article  Google Scholar 

  • Patel M, Ng T, Vasudevan S, Corke T, Post M, McLaughlin T, Suchomel C (2008) Scaling effects of an aerodynamic plasma actuator. J Airc 45:223–236

    Article  Google Scholar 

  • Pons J, Moreau E, Touchard G (2005) Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics. J Phys D Appl Phys 38:3635–3642

    Article  Google Scholar 

  • Porter C, Baughn J, McLaughlin T, Enloe C, Font G (2007) Plasma actuator force measurements. AIAA J 45:1562–1570

    Article  Google Scholar 

  • Porter C, Abbas A, Cohen K, McLaughlin T, Enloe CL (2009) Spatially distributed forcing and jet vectoring with a plasma actuator. AIAA J 47:1368–1378

    Article  Google Scholar 

  • Post M (2004) Plasma actuators for separation control on stationary and oscillating airfoils. Dissertation, University of Notre Dame

  • Post M, Corke T (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42:2177–2184

    Article  Google Scholar 

  • Rizzetta D, Visbal M (2009) Large eddy simulation of plasma-based control strategies for bluff body flow. AIAA J 47:717–729

    Article  Google Scholar 

  • Roth J, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. AIAA Paper 2006-1203

  • Roth J, Sherman D, Wilkinson S (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J 38:1166–1172

    Article  Google Scholar 

  • Roupassov D, Nikipelov A, Nudnova M, Starikovskii A (2009) Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J 47:168–185

    Article  Google Scholar 

  • Samimy M, Kim J-H, Kastner J, Adamovich I, Utkin Y (2007) Active control of high-speed and high-reynolds-number jets using plasma actuators. J Fluid Mech 578:305–330

    Article  MATH  Google Scholar 

  • Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Airc 33:691–698

    Article  Google Scholar 

  • Sidorenko A, Budovsky A, Pushkarev A, Maslov A (2008) Flight testing of DBD plasma separation control system. AIAA Paper 2008-0373

  • Sosa R, Artana G, Moreau E, Touchard G (2007) Stall control at high angle of attack with plasma sheet actuators. Exp Fluids 42:143–167

    Article  Google Scholar 

  • Takeuchi N, Yasuoka K, Ishii S (2007) Inducing mechanisms of electrohydrodynamic flow by surface barrier discharge. IEEE Trans Plasma Sci 35:1704–1709

    Article  Google Scholar 

  • Thomas F, Kozlov A, Corke T (2008) Plasma actuators for cylinder flow control and noise reduction. AIAA J 46:1921–1931

    Article  Google Scholar 

  • Vorobiev A, Rennie RM, Jumper E, McLaughlin T (2008) Experimental investigation of lift enhancement and roll control using plasma actuators. J Airc 45:1315–1321

    Article  Google Scholar 

  • Wygnanski I (2004) The variables affecting the control of separation by periodic excitation. AIAA Paper 2004-2505

Download references

Acknowledgments

This work is supported by the Air Force Research Laboratory (AFRL), Dayton Area Graduate Studies Institute (DAGSI) Student-Faculty Graduate Fellowship and the Howard D. Winbigler Professorship at The Ohio State University. The help of LaTunia Melton, James Myatt, Jamey Jacob, Jolanta Janiszewska and John Lee at the inception of this project was vital. The authors would like to thank Jim Gregory, Kihwan Kim, Jin-Hwa Kim, Edgar Caraballo, Annirudha Sinha, Martin Kearney-Fischer and Kristine McElligott for help and fruitful discussions. The comments provided by the reviewers of this paper were thorough and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Samimy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, J., Nishihara, M., Adamovich, I. et al. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp Fluids 48, 521–537 (2010). https://doi.org/10.1007/s00348-009-0755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0755-x

Keywords

Navigation