Skip to main content
Log in

Evaporation of polydispersed droplets in a highly turbulent channel flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C :

Vapor concentration (kg m−3)

C ref :

Reference concentration (kg m−3)

C vap :

Vapor mass concentration (kg m−3)

D 10 :

Mean arithmetic diameter (m)

D 32 :

Sauter mean diameter (m)

f, g :

Inter-correlation functions

F u , F v :

Longitudinal and radial components flatness factors

H :

Width of the channel cross-section (m)

L f :

Turbulence integral length scale (m)

M :

Molar mass (kg m−1)

m :

Mass (kg)

S u , S v :

Longitudinal and radial components skewness factors

St :

Stokes number

T :

Temperature (K)

U 0 :

Flowing velocity (m s−1)

U :

Longitudinal velocity (m s−1)

V :

Radial velocity (m s−1)

u, v :

Instantaneous velocities (m s−1)

u, v′:

Turbulent velocity components (m s−1)

X :

Longitudinal location (m)

X vap :

Vapor molar fraction

Y :

Radial location (m)

y′:

Fluctuating vapor mass fraction

Y vap :

Vapor mass fraction

\( \overline{( \cdot )} \) :

Arithmetic average symbol

References

  • Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32:1605–1618

    Article  Google Scholar 

  • Atthasit A (2003) Etude expérimentale des phénomènes d’interaction dans les jets diphasiques denses au moyen de jets rectilignes monodisperses. Phd thesis, ENSAE Toulouse

  • Bazile R, Stepowski D (1995) Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence. Exp Fluids 20:1–9

    Article  Google Scholar 

  • Bédat B, Cheng RK (1995) Experimental study of premixed flames in intense isotropic turbulence. Combust Flame 100:485–494

    Article  Google Scholar 

  • Birouk M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Combust 32:408–423

    Article  Google Scholar 

  • Chiang CH, Sirignano WA (1993) Axisymmetric calculation of three droplets interactions. Atomization Spray 3:91–107

    Google Scholar 

  • Ferrand V, Bazile R, Borée J, Charnay G (2003) Gas-droplet turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets. Int J Multiphase Flow 29:195–217

    Article  MATH  Google Scholar 

  • Frackowiak B (2007) Approche expérimentale et simulation numérique des effets d’interaction entre gouttes en évaporation. Phd thesis, ENSAE, Toulouse

  • Hubbard GL, Denny VE, Mills AF (1975) Droplet evaporation: effects of transient and variable properties. Int J Heat Mass Transf 18:1003–1008

    Article  Google Scholar 

  • Jablonski A (1935) Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren. Zeitschrift für Physik 94:38–46

    Article  Google Scholar 

  • Karpetis AN, Gomez A (2000) An experimental study of well-defined turbulent non-premixed spray flames. Combust Flame 121:1–23

    Article  Google Scholar 

  • Kim I, Elgobashi S, Sirignano WA (1993) Three-dimensional flow over two spheres placed side by side. J Fluid Mech 246:465–488

    Article  MATH  Google Scholar 

  • Kurosawa R, Hishida K, Maeda W (2002) Combined measurement of LIF and ILIDS for vapor concentration and droplet size and velocity in a spray. Proc Therm Eng Conf 177:249–278

    Google Scholar 

  • Lecordier B (1997) Etude de l’interaction de la propagation d’une flamme prémélangée avec le champ aérodynamique par association de la tomographie laser et de la vélocimétrie par image de particules. Phd thesis, Faculté des Sciences de l’Université de Rouen

  • Lozano A, Yip B, Hanson RK (1992) Acetone, a tracer for concentration measurements in gaseous flows by planar induced fluorescence. Exp Fluids 13:363–376

    Article  Google Scholar 

  • Maurel S (2001) Etude par imagerie laser de la génération et de la rupture d’un écoulement tourbillonnaire compressé. Phd thesis, Institut National Polytechnique de Toulouse

  • Orain M, Mercier X, Grisch F (2006) PLIF imaging of fuel-vapor spatial distribution around a monodispersed stream of acetone droplets: comparison with modeling. Combust Sci Technol 177:249–278

    Article  Google Scholar 

  • Rajaram R, Lieuwen T (2004) Effect of approach flow turbulence characteristics on sound generation from premixed flames. AIAA Paper 2004-0461

  • Réveillon J, Demoulin FX (2007) Evaporating droplets in turbulent reacting flows. Proc Combust Inst 31:2319–2326

    Article  Google Scholar 

  • Ritchie BD, Seitzman JM (2001) Quantitative acetone PLIF in two-phase flows. AIAA Paper 2001-0414

  • Sazhin S (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust 32:162–214

    Article  Google Scholar 

  • Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Google Scholar 

  • Sornek RJ, Dobashi R, Hirano T (2000) Effect of turbulence on vaporization, mixing, and combustion of liquid-fuel sprays. Combust Flame 120:479–491

    Article  Google Scholar 

  • Spalding DB (1951) Combustion of fuel particles. Fuel 30:121

    Google Scholar 

  • Thurber M, Hanson R (1999) Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm. Appl Phys B 69(3):229–240

    Article  Google Scholar 

  • Videto BD, Santavicca DA (1991) A turbulent flow system for studying turbulent combustion processes. Combust Sci Technol 76:159–164

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Moreau and Dr. B. Bédat for fruitful discussions. G. Couteau, M. Marchal, E. Cid (IMFT) and P. Gicquel (ONERA) are greatly acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy Bazile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochet, M., Bazile, R., Ferret, B. et al. Evaporation of polydispersed droplets in a highly turbulent channel flow. Exp Fluids 47, 379–394 (2009). https://doi.org/10.1007/s00348-009-0667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0667-9

Keywords

Navigation