Skip to main content
Log in

Torus generated by Escherichia coli

  • Letter
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The bioluminescence images of unstirred cultures show that lux reporter E. coli (0.10 mg biomass per ml of the broth medium) in 6.4–10 mm diameter circular containers induce center-fluid-rising toroidal convection of ≤1 mm/min. The bioconvective torus is stable in a Teflon vessel and is deformed by 3.2–4.4 mm wavelength azimuthal waves in polystyrene or glass vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bees M, Hill N (1997) Wavelengths of bioconvection patterns. J Exp Biol 200:1515–1526

    Google Scholar 

  • Berke AP, Turner L, Berg HC et al (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102

    Article  Google Scholar 

  • Brenner MP, Levitov LS, Budrene EO (1998) Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J 74:1677–1693

    Article  Google Scholar 

  • Budrene EO, Berg HC (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 394:630–633

    Article  Google Scholar 

  • Budrene EO, Berg HC (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376:49–53

    Article  Google Scholar 

  • Cisneros LH, Cortez R, Dombrowski C et al (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43:737–753

    Article  Google Scholar 

  • Daniels R, Reynaert S, Hoekstra H et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci USA 103:14965–14970

    Article  Google Scholar 

  • Dazin A, Dupont P, Stanislas M (2006) Experimental characterization of the instability of the vortex ring. Part I: linear phase. Exp Fluids 40:383–399

    Article  Google Scholar 

  • Fleming J, Imbalzano J, Kemkes D et al (2001) Material of construction for pharmaceutical and biotechnology processing: moving into the 21st century. Pharm Eng 21(6):34–44

    Google Scholar 

  • Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  Google Scholar 

  • Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20

    Article  MATH  MathSciNet  Google Scholar 

  • Hill J, Kalkanci O, McMurry JL et al (2007) Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:068101

    Article  Google Scholar 

  • Janosi IM, Kessler JO, Horvath VK (1998) Onset of bioconvection in suspension of Bacillus subtilis. Phys Rev E 58:4793–4800

    Article  Google Scholar 

  • Roda A, Pasini P, Mirasoli M et al (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  Google Scholar 

  • Šimkus R (2006) Bioluminescent monitoring of turbulent bioconvection. Luminescence 21:77–80

    Article  Google Scholar 

  • Šimkus R, Csöregi E, Leth S et al (1999) Oscillatory luminescence from lux-gene engineered bacteria. Biotechnol Tech 13:529–532

    Article  Google Scholar 

  • Šimkus R, Meškienė R, Meškys R (2001) Ultradian rhythms and the lux-gene reporter system. Cell Biol Int 25:829–834

    Article  Google Scholar 

  • Šimkus R, Meškienė R, Leth S et al (2004) Adaptive responses to static conditions in nutrient-rich cultures of luminous Ralstonia eutropha. Biotechnol Lett 26:559–562

    Article  Google Scholar 

  • Winson MK, Swift S, Hill PJ et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by EC 6FP STREP project “FACEiT”, contract No. 018391 GOCE and the Lithuanian State Science and Studies Foundation project “BIOSA” N-19/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Šimkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimkus, R., Kirejev, V., Meškienė, R. et al. Torus generated by Escherichia coli . Exp Fluids 46, 365–369 (2009). https://doi.org/10.1007/s00348-008-0598-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0598-x

Keywords

Navigation