Skip to main content
Log in

An experimental study of the liquid film on a vertical wire under the action of an impinging annular jet

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The liquid film remaining on a wire withdrawn from a liquid bath and forced through an annular jet is experimentally investigated on a dedicated facility. An optical laser-based technique recently introduced to study liquid-film instabilities on small-radius cylinders allows the measurement of the mean final thickness and wave characteristics. Experimental results are compared to analytical predictions obtained with a simple model specifically derived for this configuration and based on liquid-film properties (density, viscosity and surface tension) and operating parameters (wire speed, nozzle dimensions and stagnation pressure). Such a model relies on the knowledge of pressure-gradient and wall shear-stress distributions generated by the annular jet radially impinging on the cylinder. Different correlations providing the maxima of these profiles are employed and, after some improvements to the original “knife” model, the mean final thickness is correctly predicted. Successful results are obtained, also, using a simple expression derived from the LLD theory. The experimental measurement of surface-perturbation features (wave amplitude, wavelength and amplification factor) as a function of the operating parameters leads to some important conclusions that could have a remarkable and direct influence on the industrial process of wire coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alekseenko SV, Nakoryakov VE, Pokusaev BG (1994) Wave flow of liquid films. Begell House, New York

    Google Scholar 

  • Anthoine J (1996) Annular jet wiping. Project report 1996-02, von Kármán Institute for Fluid Dynamics

  • Ashforth-Frost S, Rüdel U (2002) Thermal and hydrodynamic visualisation of a water jet impinging on a flat surface using microencapsulated liquid crystals. Int J Fluid Dyn 7:1–7

    Google Scholar 

  • Chan TL, Leung CW, Jambunathan K, Ashforth-Frost S, Zhou Y, Liu MH (2002) Heat transfer characteristics of a slot jet impinging on a semi-circular convex surface. Int J Heat Mass Transf 45:993–1006

    Article  Google Scholar 

  • Chen F, Tsaur JY, Durst F, Das SK (2003) On the axisymmetry of annular jet instabilities. J Fluid Mech 488:355–367

    Article  MATH  MathSciNet  Google Scholar 

  • Del Taglia C, Blum L, Gass J, Ventikos Y, Poulikakos D (2004) Numerical and experimental investigation of an annular jet flow with large blockage. J Fluids Eng 126:375–384

    Article  Google Scholar 

  • Deryaguin BV (1945) On the thickness of the liquid film adhering to the walls of a vessel after emptying. Acta Physicochimica URSS 20:349–352

    Google Scholar 

  • Deryaguin BV, Levi SM (1964) Film coating theory. Focal Point Press, New York

    Google Scholar 

  • Ellen CH, Tu CV (1984) An analysis of jet stripping of liquid coatings. J Fluids Eng 106:399–413

    Article  Google Scholar 

  • Ellen CH, Tu CV (1985) Jet stripping of molten metallic coatings. Phys Fluids 28(4):1202–1203

    Article  Google Scholar 

  • Elsaadawy EA, Hanumanth GS, Balthazaar AKS, McDermid JR, Hrymak AN, Forbes JF (2007) Coating weight model for the continuous hot-dip galvanizing process. Metall Mater Trans B 38B:413–424

    Article  Google Scholar 

  • Esirgemez E, Newby J, Nott C, Ölcmen S, Ötügen V (2007) Experimental study of a round jet impinging on a convex cylinder. Meas Sci Technol 18:1800–1810

    Article  Google Scholar 

  • Esmail NM, Hummel RL (1975) Nonlinear theory of free coating onto a vertical surface. AIChE J 21:958–965

    Article  Google Scholar 

  • Gosset A, Buchlin JM (2007) Jet wiping in hot-dip galvanization. J Fluids Eng 129:466–475

    Article  Google Scholar 

  • Hewitt GF (1978) Measurement of two phase flow parameters. Academic Press, London

    Google Scholar 

  • Homsy GM, Geyling FT (1977) A note on instabilities in rapid coating cylinders. AIChE J 23(4):587–590

    Article  Google Scholar 

  • Lacanette D, Vincent S, Arquis E, Gardin P (2005a) A numerical experiment on the interaction between a film and a turbulent jet. C R Mecanique 333:343–349

    Google Scholar 

  • Lacanette D, Vincent S, Arquis E, Gardin P (2005b) Numerical simulation for gas jet wiping in steel strip galvanizing process. ISIJ Int 45(2):214–220

    Article  Google Scholar 

  • Lacanette D, Gosset A, Vincent S, Buchlin JM, Arquis E, Gardin P (2006) Macroscopic analysis of gas-jet wiping: numerical simulation and experimental approach. Phys Fluids 18:042,103

    Article  Google Scholar 

  • Landau LD, Levich VG (1942) Dragging of a liquid by a moving plate. Acta Physicochim USSR 17:42–54

    Google Scholar 

  • Levich VC (1962) Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lin SP, Liu WC (1975) Instability of film coating of wires and tubes. AIChE J 21(4):775–782

    Article  MathSciNet  Google Scholar 

  • Maurel S, Solliec C (2001) A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids 31:687–696

    Article  Google Scholar 

  • Mouza AA, Vlachos NA, Karabelas SVPAJ (2000) Measurement of liquid film thickness using a laser light absorption method. Exp Fluids 28:355–359

    Article  Google Scholar 

  • Nada SA (2006) Slot/slots air jet impinging cooling of a cylinder for different jets-cylinder configurations. Heat Mass Transfer 43:135–148

    Article  Google Scholar 

  • Naphade P, Mukhopadhyay A, Chakrabarti S (2005) Mathematical modelling of jet finishing process for hot-dip zinc coatings on steel strip. ISIJ Int 45(2):209–213

    Article  Google Scholar 

  • Nozhat WM (1997) Measurement of liquid-film thickness by laser interferometry. Appl Opt 36(30):7864–7869

    Article  Google Scholar 

  • Olsson EEM, Ahrné LM, Tragårdh A (2005) Flow and heat transfer from multiple slot air jets impinging on circular cylinders. J Food Eng 67:273–280

    Article  Google Scholar 

  • Passelecq L (1997) Annular jet wiping. Staigiaire report 1997–98, von Kármán Institute for Fluid Dynamics

  • Patte-Rouland B, Lalizel G, Moreau J, Rouland E (2001) Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas Sci Technol 12:1404–1412

    Article  Google Scholar 

  • Pavlova A, Amitay M (2006) Electronic cooling using synthetic jet impingement. ASME J Heat Transfer 128(9):897–907

    Article  Google Scholar 

  • Phares DJ, Smedley GT, Flagan RC (2000a) The inviscid impingement of a jet with arbitrary velocity profile. Phys Fluids 12(8):2046–2055

    Article  Google Scholar 

  • Phares DJ, Smedley GT, Flagan RC (2000b) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375

    Article  MATH  Google Scholar 

  • Quéré D (1999) Fluid coating on a fiber. Annu Rev Fluid Mech 31:347–384

    Article  Google Scholar 

  • Silverman I, Yarin AL, Reznik SN, Arenshtam A, Kijet D, Nagler A (2006) High heat-flux accelerator targets: cooling with liquid metal jet impingement. Int J Heat and Mass Transf 49:2782–2792

    Article  Google Scholar 

  • Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2000) Validation and application of a novel elongational device for polymer solutions. J Rheol 44:595–616

    Article  Google Scholar 

  • Tadmor Z, Gogos CG (1979) Principles of polymer processing. Wiley, New York

    Google Scholar 

  • Thorton JA, Graff HF (1976) An analytical description of the jet finishing process for hot-dip metallic coating on strip. Metall Trans B 7B:207–218

    Google Scholar 

  • Tu CV (1995) Impingingement of plane turbulent jets and their application in industrial coating control. Ph.d. thesis, University of Newcastle, Callaghan

  • Tu CV, Wood DH (1996) Measurements beneath an impinging plane jet. Exp Therm Fluid Sci 13:364–373

    Article  Google Scholar 

  • Tuck EO (1983) Continuous coating with gravity and jet stripping. Phys Fluids 26:2352–2358

    Article  MATH  Google Scholar 

  • Zuccher S (1999) Liquid film instabilities of wire coatings. Project report 1999-35, von Kármán Institute for Fluid Dynamics

  • Zuccher S (2005) A novel measurement technique for the study of wire coating instabilities. Exp Fluids 39:694–702

    Article  Google Scholar 

  • Zuccher S (2008) Experimental investigations of the liquid-film instabilities forming on a wire under the action of a die. Int J Heat Fluid Flow (in press). doi:10.1016/j.ijheatfluidflow.2008.08.004

  • Zuckerman N, Lior N (2005) Impingement heat transfer: correlations and numerical modeling. ASME J Heat Transfer 127:544–552

    Article  Google Scholar 

  • Zuckerman N, Lior N (2007) Radial slot jet impingement flow and heat transfer on a cylindrical target. J Thermophys Heat Transfer 21(3):548–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Zuccher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuccher, S. An experimental study of the liquid film on a vertical wire under the action of an impinging annular jet. Exp Fluids 46, 309–322 (2009). https://doi.org/10.1007/s00348-008-0561-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0561-x

Keywords

Navigation