Skip to main content
Log in

Single bubble deformation and breakup in simple shear flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

An Erratum to this article was published on 04 August 2009

Abstract

Experiments in a parallel band apparatus and a transparent concentric cylinder device allow the observation of bubble deformation (shape and orientation) and breakup as a function of the viscosity ratio λ and the Capillary number Ca. For viscosity ratios between 3.1 × 10−7 and 6.7 × 10−8, critical Capillary numbers Ca c for bubble breakup between 29 and 45 are found. It is furthermore shown that in the given parameter space no clear distinction between tip breakup and fracture can be made for bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

minor axis (m)

Ca :

Capillary number

Ca c :

critical Capillary number

D :

deformation

g :

gravity constant (m s−2)

\(\dot{\gamma}\) :

shear rate (s−1)

ηdisp :

disperse phase viscosity (Pa s)

ηcont :

continuous phase viscosity (Pa s)

L :

major axis (m)

λ:

viscosity ratio

r :

radius (m)

r B, orbit :

radius of bubble orbit (m)

R i :

radius of inner cylinder (m)

R o :

radius of outer cylinder (m)

Re:

Reynolds number

ρ:

density (kg m−3)

σ:

interfacial tension (N m−1)

Θ:

rotation angle (°)

v St :

Stokes velocity (m s−1)

ω:

angular velocity (s−1)

x B :

bubble diameter (m)

References

  • Acrivos A (1983) The breakup of small drops and bubbles in shear flows. Ann NY Acad Sci 404:1

    Article  Google Scholar 

  • Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241

    Article  MATH  Google Scholar 

  • Birkhofer BH, Eischen J-C, Megias-Alguacil D, Fischer P, Windhab EJ (2005) Computer-controlled flow cell for the study of particle and drop dynamics in shear flow fields. Ind Eng Chem Res 44:6999

    Article  Google Scholar 

  • Canedo EL, Favelukis M, Tadmor Z, Talmon Y (1993) An experimental study of bubble deformation in viscous liquids in simple shear flow. AIChE J 39:553

    Article  Google Scholar 

  • Cerf RJ (1951) Rechercheds theoretiques sur l’effet Maxwell des solutions de macromolecules deformables, 2. Applications de la theorie de la sphere elastique aux solutions de macromolecules en chianes. J Chimie Physique et de physico-chimie biologique 48:85

    Google Scholar 

  • Chaffey CE, Brenner H (1967) A second-order theory for shear deformation of drops. J Colloid Interface Sci 24:258

    Article  Google Scholar 

  • Cox RG (1969) The deformation of a drop in a general time-dependent fluid flow. J Fluid Mech 37:601

    Article  MATH  Google Scholar 

  • de Bruijn RA (1993) Tipstreaming of drops in simple shear flows. Chem Eng Sci 48:277

    Article  Google Scholar 

  • DIN (1976) 53018, Teil 1: Viskosimetrie, Messung der dynamischen Viskositäten and Fliesskurven mit Rotationsvisosimetern mit Standardgeometrie: Normausführung, DIN Deutsches Institut für Normung, Beuth Verlag GmbH, Berlin

  • Fischer P, Erni P (2007) Emulsion drops in external flow fields—the role of liquid interfaces. Curr Opin Colloid Interface Sci 12:196

    Article  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersing devices in such systems. Chem Eng Commun 14:225

    Article  Google Scholar 

  • Gordillo JM, Perez-Saborid M (2006) Axissymmetric breakup of bubbles at high Reynolds numbers. J Fluid Mech 562:303

    Article  MATH  MathSciNet  Google Scholar 

  • Guido S, Greco F (2001) Drop shape under slow steady shear flow and during relaxation, experimental results and comparison with theory. Rheol Acta 40:176

    Article  Google Scholar 

  • Guido S, Villone M (1998) Three-dimensional shape of a drop under simple shear flow. J Rheol 42:395

    Article  Google Scholar 

  • Guido S, Greco F, Villone M (1999) Experimental determination of drop shape in slow steady shear flow. J Colloid Interface Sci 219:298

    Article  Google Scholar 

  • Hinch EJ, Acrivos A (1980) Long slender drops in a simple shear flow. J Fluid Mech 98:305

    Article  MATH  MathSciNet  Google Scholar 

  • Karam HJ, Bellinger JC (1968) Deformation and breakup of liquid droplets in a simple shear field. Ind Eng Chem Fundam 4:576

    Article  Google Scholar 

  • Lasheras JC, Eastwood C, Martínez-Bazán C, Montañés JL (2002) A review of statistical models for the break-up of an immiscible fluid immersed into a fully deverloped turbulent flow. Int J Multiphase Flow 28:247

    Article  MATH  Google Scholar 

  • Maffetone PL, Minale M (1999) Equation of change for ellipsoidal drops in viscous flow. J Non-Newton Fluid Mech 78:227

    Google Scholar 

  • Müller-Fischer N, Bleuler H, Windhab EJ (2007a) Dynamically enhanced membrane foaming. Chem Eng Sci 62:4409

    Article  Google Scholar 

  • Müller-Fischer N, Suppiger D, Windhab EJ (2007b) Impact of static pressure and volumetric energy input on the microsctucture of food foam whipped in a rotor-stator device. J Food Eng 80:306

    Article  Google Scholar 

  • Pozrikidis C (1993) On the transient motion of orderes suspensions of liquid drops. J Fluid Mech 264:301

    Article  Google Scholar 

  • Rallison JM (1981) A numerical study of the deformation and burst of a viscous drop in general shear flows. J Fluid Mech 109:465

    Article  MATH  Google Scholar 

  • Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Ann Rev Fluid Mech 16:45

    Article  Google Scholar 

  • Revuelta A, Rodríguez-Rodríguez J, Martínez-Bazán C (2006) Bubble break-up in a straining flow at finite Reynolds numbers. J Fluid Mech 551:175

    Article  MATH  Google Scholar 

  • Risso F, Fabre J (1998) Oscillation and breakup of a bubble immersed in a turbulent flow. J Fluid Mech 372:323

    Article  MATH  Google Scholar 

  • Rodríguez-Rodríguez J, Gordillo JM, Martínez-Bazán C (2006) Breakup time and morphology of drops and bubbles in a high-Reynolds-number flow. J Fluid Mech 548:69

    Article  Google Scholar 

  • Rust AC, Manga M (2002) Bubble shapes and orientation in low Re simple shear flow. J Colloid Interface Sci 249:476

    Article  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Ann Rev Fluid Mech 26:65

    Article  Google Scholar 

  • Stone HA, Bentley BJ, Leal LG (1986) An experimental study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131

    Article  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501

    Article  Google Scholar 

  • Torza S, Cos RG, Mason SG (1972) Particle motions in sheared suspensions: XXVII. Transient and steady deformation and burst of liquid drops. J Colloid Interface Sci 38:395

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rok Gunde for the surface tension measurements, Jan Corsano for building the transparent concentric cylinder device as well as Daniel Kiechl, Bernhard Koller, Peter Bigler, and Bruno Pfister for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadina Müller-Fischer.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00348-009-0722-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Fischer, N., Tobler, P., Dressler, M. et al. Single bubble deformation and breakup in simple shear flow. Exp Fluids 45, 917–926 (2008). https://doi.org/10.1007/s00348-008-0509-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0509-1

Keywords

Navigation