Skip to main content

Advertisement

Log in

Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Evidence suggests that fluid flow rates in mid-ocean ridge hydrothermal systems may be strongly influenced by mechanical forces such as ocean tidal loading. However, long time-series measurements of flow have not been collected in these environments. We develop a non-invasive method, called optical plume velocimetry (OPV), suitable for obtaining fluid flow rates through black smoker vents based on image analysis of effluent video. We use video from laboratory flows to evaluate three different methods for estimating the image-velocity field that are based on region-based matching, spectral-analysis of Hovmöller diagrams, and temporal cross-correlation of adjacent pixel values. We find that OPV is most sensitive and least biased when the cross-correlation method is used and conclude that OPV should not be applied to flows that are transitioning between jet-like and plume-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

area of jet nozzle, m2

B :

initial specific buoyancy flux, m4/s3

c 1 :

constant in along-axis plume velocity equation

c f :

fraction of Nyquist frequency for Hovmöller cut-off

C :

temporal cross-correlation function

D :

jet nozzle diameter, m

d :

pixel separation in temporal cross-correlation method, pixels

f :

frequency, 1/s

g :

gravitational acceleration, m/s2

k 1 :

constant in along-axis jet velocity equation

l M :

Morton length scale, m

l max :

lag number at the cross-correlation maximum, frames

M :

initial specific momentum flux, m4/s2

n :

number of instantaneous image-velocity measurements used to calculate the mean

N :

number of frames in image sequence

Q :

nozzle flow rate, m3/s

Q i :

individual nozzle flow rate measurement, l/s

Q m :

mean measured nozzle flow rate, 1/s

r :

radial coordinate, m

R :

Residual for region-based matching image-velocity estimation

Re :

Reynolds number

S :

standard deviation

Δt 10 :

time for source fluid tank level to drop by 10 l, s

\(\bar{u}\) :

flow velocity, m/s

t :

time, s

u p :

instantaneous image-velocity, pixels/frame

\(\overline{u_p}\) :

mean image-velocity, pixels/frame

U m :

mean along-axis jet velocity, m/s

U p :

flow rate metric, pixels/frame

W :

mean flow velocity across jet nozzle, m/s

W p :

mean flow velocity across jet nozzle converted to pixels per second, pixels/frame

x :

horizontal coordinate, m

x p :

projected horizontal coordinate, pixels

z :

vertical coordinate, m

z p :

projected vertical coordinate, pixels

λ p :

flow feature wavelength, pixels

ν:

Hovmöller FFT wave number, 1/pixels

μ:

viscosity of jet fluid, Pa s

ρ:

density of ambient fluid, kg/m3

ρ J :

density of jet fluid, kg/m3

Δρ:

density difference between jet and ambient fluid, kg/m3

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–299

    Google Scholar 

  • Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluid 39:159–169. doi:10.1007/s00348-005-0991-7

    Article  Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical Monograph 91, American Geophysical Union, Washington DC, pp 85–114

  • Anandan P (1989) A computational framework and an algorithm for the measurement of visual motion. Int J Comput Vis 2:283–310

    Article  Google Scholar 

  • Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Comput Surv 27(3):433–467

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1985) An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am J Sci 285(8):725–763

    Google Scholar 

  • Butterfield DA, Jonasson IR, Massoth GJ, Feely RA, Roe KK, Embley RW, Holden JF, McDuff RE, Lilley MD, Delaney JR (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil Trans R Soc Lond A 355:369–386

    Article  Google Scholar 

  • Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69:159–175

    Article  Google Scholar 

  • Coupland JM (2000) Laser Doppler and pulsed laser velocimetry in fluid mechanics. In: Rastogi PK (ed) Photomechanics, topics in applied physics. Springer, Berlin

    Google Scholar 

  • Crone TJ, Wilcock WSD (2005) Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems. Geochem Geophys Geosyst 6:Q07001. doi:10.1029/2004GC000905

    Article  Google Scholar 

  • Crone TJ, Wilcock WSD, Barclay AH, Parsons JD (2006) The sound generated by mid-ocean ridge black smoker hydrothermal vents. PLoS ONE 1:e133. doi:10.1371/journal.pone.0000133

    Article  Google Scholar 

  • Davis E, Becker K, Dziak R, Cassidy J, Wang K, Lilley M (2004) Hydrological response to a seafloor spreading episode on the Juan de Fuca Ridge. Nature 430:335–338. doi:10.1038/nature02755

    Article  Google Scholar 

  • Delaney JR, Robigou V, McDuff RE (1992) Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. J Geophys Res 97(B13):19663–19682

    Article  Google Scholar 

  • Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WSD, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230

    Article  Google Scholar 

  • Delaney JR, Heath GR, Howe B, Chave AD, Kirkham H (2000) NEPTUNE: Real-time ocean and earth sciences at the scale of a tectonic plate. Oceanography 13(2):71–79

    Google Scholar 

  • Dimotakis PE, Miake-Lye RC, Papantoniou DA (1983) Structure and dynamics of round turbulent jets. Phys Fluids 26(11):3185–3192

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    MATH  Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  Google Scholar 

  • Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66:51–83

    Article  Google Scholar 

  • Holzbecher EO (1998) Modeling density-driven flow in porous media. Springer, Berlin

    Google Scholar 

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Hovmöller E (1949) The trough-and-ridge diagram. Tellus 1(2):62–66

    Article  Google Scholar 

  • Johnson HP, Hutnak M, Dziak RP, Fox CG, Urcuyo I, Cowen JP, Nabelek J, Fisher C (2000) Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407:174–177

    Article  Google Scholar 

  • Jupp TE (2000) Fluid flow processes at mid-ocean ridge hydrothermal systems. PhD Thesis, Pembroke College, University of Cambridge

  • Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491. doi:10.1146/annurev.earth.30.091201.141331

    Article  Google Scholar 

  • Kraus NC, Lohrmann A, Cabrera R (1994) New acoustic meter for measuring 3D laboratory flows. J Hydraul Eng 120(3):406–412

    Article  Google Scholar 

  • Larson BI, Olson EJ, Lilley MD (2007) In-situ measurement of dissolved chloride in high temperature hydrothermal fluids. Geochim Cosmochim Acta 71:2510–2523. doi:10.1016/j.gca.2007.02.013

    Article  Google Scholar 

  • List EJ (1982) Turbulent jets and plumes. Annu Rev Fluid Mech 14:189–212

    Article  Google Scholar 

  • McDuff RE (1995) Physical dynamics of deep-sea hydrothermal plumes. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical Monograph 91, American Geophysical Union, Washington DC, pp 357–368

  • McDuff RE, Delaney JR (1995) Periodic variability in fluid temperature at a seafloor hydrothermal vent. Eos Trans AGU 76(46), Fall Meet. Supl., F710

  • Meynart R (1983) Speckle velocimetry study of vortex pairing in a low-Re unexcited jet. Phys Fluids 26:2074–2079

    Article  Google Scholar 

  • Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond Math Phys Sci 234(1196):1–23

    MATH  MathSciNet  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Papanicolaou PN, List EJ (1988) Investigations of round vertical turbulent bouyant jets. J Fluid Mech 195:341–391

    Article  Google Scholar 

  • Pruis MJ, Johnson HP (2004) Tapping into the sub-seafloor: examining diffuse flow and temperature from an active seamount on the Juan de Fuca Ridge. Earth Planet Sci Lett 217:379–388. doi:10.1016/S0012-821X(03)00607-1

    Article  Google Scholar 

  • Rodi W (ed) (1982) Turbulent buoyant jets and plumes, HMT—the science & applications of heat and mass transfer, vol 6. Pergamon, New York

    Google Scholar 

  • Ruden P (1933) Turbulente Ausbreitungsvorgänge im Freistrahl. Die Naturwissenschaften 21:375–378

    Article  Google Scholar 

  • Schultz A, Dickson P, Elderfield H (1996) Temporal variations in diffuse hydrothermal flow at TAG. Geophys Res Lett 23(23):3471–3474

    Article  Google Scholar 

  • Shabbir A, George WK (1994) Experiments on a round turbulent buoyant plume. J Fluid Mech 275:1–32

    Article  Google Scholar 

  • Spiess FN, Macdonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diaz Garcia VM, Francheteau J, Guerrero J, Hawkins J, Haymon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdougall JD, Miller S, Normark W, Orcutt J, Rangin C (1980) East Pacific Rise: hot springs and geophysical experiments. Science 207(4438):1421–1433

    Article  Google Scholar 

  • Tokumaru PT, Dimotakis PE (1995) Image correlation velocimetry. Exp Fluid 19:1–15

    Article  Google Scholar 

  • Tolstoy M, Vernon FL, Orcutt JA, Wyatt FK (2002) Breathing of the seafloor: tidal correlations of seismicity at Axial volcano. Geology 30(6):503–506

    Article  Google Scholar 

  • Turner JS (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173:431–471

    Article  Google Scholar 

  • Wilcock WSD, Fisher AT (2004) Geophysical constraints on the sub-seafloor environment near mid-ocean ridges. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical Monograph 144, American Geophysical Union, Washington DC, pp 51–74

  • Wilcock WSD, Toomey DR (1991) Estimating hypocentral uncertainties for marine microearthquake surveys: a comparison of the generalized inverse and grid search methods. Mar Geophys Res 13:161–171

    Google Scholar 

Download references

Acknowledgments

We thank John Kumph, Eric Lindahl, and John Mickett for many helpful discussions about this work, and we thank Evelyn Lessard for the use of camera equipment. This manuscript benefited greatly from the thorough reviews of two anonymous reviewers. Support for this study was provided by the National Science Foundation under grant OCE-0623285, by the W. M. Keck Foundation through a grant to the University of Washington, and by John Delaney via the Jerome M. Paros Endowed Chair in Sensor Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Crone.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crone, T.J., McDuff, R.E. & Wilcock, W.S.D. Optical plume velocimetry: a new flow measurement technique for use in seafloor hydrothermal systems. Exp Fluids 45, 899–915 (2008). https://doi.org/10.1007/s00348-008-0508-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0508-2

Keywords

Navigation