Advertisement

Experiments in Fluids

, Volume 44, Issue 3, pp 419–430 | Cite as

Micro-flow analysis by molecular tagging velocimetry and planar Raman-scattering

  • Karsten RoetmannEmail author
  • Waldemar Schmunk
  • Christoph S. Garbe
  • Volker Beushausen
Research Article

Abstract

The two dimensional molecular tagging velocimetry (2D-MTV) has been used to measure velocity fields of the flow in a micro mixer. Instead of commonly used micro particles an optical tagging of the flow has been performed by using a caged dye. The pattern generation is done by imaging a mask for the first time. This allows to generate nearly any imaginable pattern. The flow induces a deformation of the optically written pattern that can be tracked by laser induced fluorescence. The series of raw images acquired in this way were analyzed quantitatively with a novel optical flow based technique. The reference measurements have been carried out allowing to draw conclusions about the accuracy of this procedure. A comparison to the standard technique of μPIV has also been conducted. Apart from measuring flow velocities in microfluidic mixing processes, the spatial distribution of concentration fields for different species has also been measured. To this end, a new technique has been developed that allows spatial measurements from Planar Spontaneous Raman Scattering (PSRS). The Raman stray light of the relevant species has been spectrally selected by a narrow bandpass filter and thus detected unaffectedly by the Raman stray light of other species. The successful operation of this measurement procedure in micro flows will be demonstrated exemplary for a mixing process of water and ethanol.

Keywords

Vector Field Optical Flow Microfluidic System Velocity Vector Field Raman Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Authors thank the German Research Community (Deutsche Forschungsgemeinschaft-DFG) for funding of the project in the framework of the DFG-program “Imaging techniques for flow analysis” (“Bildgebende Messvervahren für die Strömungsanalyse”, SPP 1147) as well as in the priority program “Mathematical methods for time series analysis and digital image processing”, SPP 1114.

References

  1. Barron JL, Fleet D, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRefGoogle Scholar
  2. Bazile R, Stepowski D (1994) Measurement of the vaporization dynamics in the development zone of a burning spray by planar laser induced fluorescence and raman scattering. Exp Fluids 16:171–180CrossRefGoogle Scholar
  3. Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15. doi: 10.1039/b102818a CrossRefGoogle Scholar
  4. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26. doi: 10.1016/j.aca.2003.09.019 CrossRefGoogle Scholar
  5. Garbe CS (2006) Measuring and modeling fluid dynamic processesusing digital image sequence analysis. Habil. Ruprecht-Karls-Universität, HeidelbergGoogle Scholar
  6. Garbe CS, Spies H, Jähne B (2003) Estimation of surface flow and net heat flux from infrared image sequences. J Math Imaging Vis 19:159–174zbMATHCrossRefGoogle Scholar
  7. Garbe CS, Roetmann K, Jähne B (2006) An optical flow based technique for the non-invasive measurement of microfluidic flows. In: 12th International symposium on flow visualization. Göttingen, Germany, pp 1–10Google Scholar
  8. Garbe CS, Degreif K, Jähne B (2007a) Estimating the viscous shear stress at the water surface from active thermography. In: Transport at the air sea interface—measurements, models and parametrizations. Springer, Heidelberg, pp 223–239Google Scholar
  9. Garbe CS, Roetmann K, Beushausen V, Jähne B (2007b) An optical flow mtv based technique for measuring microfluidic flow in the presence of diffusion and taylor dispersion. Exp Fluids (submitted)Google Scholar
  10. Gee KR, Weinberg ES, Kozlowski DJ (2001) Caged q-rhodamine dextran: a new photoactivated fluorescent tracer. Bioorg Med Chem Lett 11(16):2181–2183CrossRefGoogle Scholar
  11. Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372CrossRefGoogle Scholar
  12. Haußecker H, Fleet D (2001) Computing optical flow with physical models of brightness variation. IEEE Trans Pattern Anal Mach Intell 23(6):661–673CrossRefGoogle Scholar
  13. Inaba S, Sato Y, Hishida K, Maeda M (2001) Flow measurements in microspace using sub-micron fluorescent particles—an effect of brownian motion on velocity detection. In: 4th International symposium on particle image velocimetryGoogle Scholar
  14. Jähne B (2005) Digitale Bildverarbeitung, 6th edn. Springer, HeidelbergGoogle Scholar
  15. Koochesfahani MM, Nocera DG (2001) Molecular tagging velocimetry maps fluid flows. Laser Focus World, Los Gartos, pp 103–108Google Scholar
  16. Krüger S, Grünefeld G, Arndt S, Hentschel W (2000) Planar velocity measurements of the gas and liquid phase in dense sprays by flow tagging. In: 10th International symposium on applications of laser techniques to fluid mechanicsGoogle Scholar
  17. Lai S, Wang S, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76(7):1832–1837. doi:10.1021/ac0348322. URL: http://dx.doi.org/10.1021/ac0348322 CrossRefGoogle Scholar
  18. Lee M, Lee JP, Rhee H, Choo J, Chai YG, Lee EK (2003) Applicability of laser-induced raman microscopy for in situ monitoring of imine formation in a glass microfluidic chip. J Raman Spectroscopy 34:737–742. doi: 10.1002/jrs.1038 CrossRefGoogle Scholar
  19. Lempert WR, Harris SR (2000) Flow tagging velocimetry using caged dye photo-activated fluorophores. Meas Sci Technol 11:1251–1258CrossRefGoogle Scholar
  20. Lempert WR, Magee K, Ronney P, Gee KR, Haugland RP (1995) Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (phantomm). Exp Fluids 18:249–257CrossRefGoogle Scholar
  21. Leung SA, Winkle RF, Wootton RCR, deMello AJ (2004) A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online raman spectroscopic detection. Analyst 130:46–51. doi: 10.1039/b412069h CrossRefGoogle Scholar
  22. Malarski A, Egermann J, Zehnder J, Leipertz A (2006) Simultaneous application of single-shot ramanography and particle image velocimetry. Opt Lett 31:1005–1007CrossRefGoogle Scholar
  23. Maynes D, Webb AR (2002) Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp Fluids 32:3–15. doi: 10.1007/s003480100290 CrossRefGoogle Scholar
  24. Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814CrossRefGoogle Scholar
  25. Mogensen KB, Klank H, Kutter JP (2004) Recentdevelopments in detection for microfluidic systems. Electrophoresis 25:3498–3512. doi: 10.1002/elps.200406108 CrossRefGoogle Scholar
  26. Mosier BP, Molho JI, Santiago JG (2002) Photobleached-fluorescence imaging of microflows. Exp Fluids 33:545–554. doi: 10.1007/s00348-002-0486-8 Google Scholar
  27. Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, NorwoodzbMATHGoogle Scholar
  28. Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16. doi: 10.1088/0960-1317/15/2/R01 CrossRefGoogle Scholar
  29. Paege BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA (2001) High throughput dna sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. PNAS 99:574–579. doi: 10.1073/pnas.012608699 CrossRefGoogle Scholar
  30. Paul PH, Garguilo MG, Rakestraw DJ (1998) Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal Chem 70:2459–2467CrossRefGoogle Scholar
  31. Roetmann K, Garbe C, Beushausen V (2005) 2d-molecular tagging velocimetry zur analyse mikrofluidischer strömungen. In: Tagungsband Lasermethoden in der Strömungsmesstechnik, pp 26/1–26/10Google Scholar
  32. Roetmann K, Garbe C, Schmunk W, Beushausen V (2006a) Micro-flow analysis by molecular tagging velocimetry and planar raman-scattering. In: 12th International symposium on flow visualizationGoogle Scholar
  33. Roetmann K, Schmunk W, Garbe C, Beushausen V (2006b) Analyse mikrofluidischer strömungen mit molecular tagging velocimetry und planarer ramanstreuung. In: Tagungsband Lasermethoden in der Strömungsmesstechnik, pp 31/1–31/8Google Scholar
  34. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319CrossRefGoogle Scholar
  35. Scharr H (2004) Optimal filters for extended optical flow. In: Complex motion IWCM 2004, Lecture Notes in Computer Science. Springer, HeidelbergGoogle Scholar
  36. Shinohara K, Sugii Y, Aota A, Hibara A, Tokeshi M, Kitamori T, Okamoto K (2004) High-speed micro-piv measurements of transient flowin microfluidic devices. Meas Sci Technol 15:1965–1970. doi: 10.1088/0957-0233/15/10/003 CrossRefGoogle Scholar
  37. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21. doi: 10.1007/s10404-004-0009-4 CrossRefGoogle Scholar
  38. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315CrossRefGoogle Scholar
  39. Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (mtv) measurements in gas phase flows. Exp Fluids 26:297–304CrossRefGoogle Scholar
  40. Viskari PJ, Landers JP (2006) Unconventional detection methods for microfluidic devices. Electrophoresis 27:1797–1810. doi: 10.1002/elps.200500565 CrossRefGoogle Scholar
  41. Wang J (2000) From dna biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016CrossRefGoogle Scholar
  42. Wood BR, Langford SJ, Cooke BM, Glenister FK, Lim J, McNaughton D (2003) Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites. FEBS Lett 554:247–252. doi: 10.1016/S0014-5793(03)00975-X CrossRefGoogle Scholar
  43. Zhou X, Liu D, Zhong R, Dai Z, Wu D, Wang H, Du Y, Xia Z, Zhang L, Mei X, Lin B (2004) Determination of sars-coronavirus by a microfluidic chip system. Electrophoresis 25(17):3032–3039. doi:10.1002/elps.200305966. URL http://dx.doi.org/10.1002/elps.200305966 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Karsten Roetmann
    • 1
    Email author
  • Waldemar Schmunk
    • 1
  • Christoph S. Garbe
    • 2
  • Volker Beushausen
    • 1
  1. 1.Laser-Laboratorium Göttingen e.V.GöttingenGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany

Personalised recommendations