Ainley J, Durkin S, Embid R, Boindala P, Cortez R (2007) The method of images for regularized stokeslets. submitted
Aranson IS, Sokolov A, Kessler JO, Goldstein RE (2007) Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E 75:040901
Article
Google Scholar
Berg HC (1993) Random walks in biology. Princeton University Press, Princeton
Google Scholar
Berg HC (2003) E. coli in motion. Springer, New York
Google Scholar
Blake JR (1971a) A spherical envelope approach to ciliary propulsion. J Fluid Mech 46:199–208
MATH
Article
Google Scholar
Blake JR (1971b) A note on the the image system for a stokeslet in a no-slip boundary. Proc Camb Philol Soc 70:303–310
MATH
Google Scholar
Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, Cambridge
MATH
Google Scholar
Cisneros L, Dombrowski C, Goldstein RE, Kessler JO (2006) Reversal of bacterial locomotion at an obstacle. Phys Rev E 73:030901
Article
Google Scholar
Cortez R (2001) The method of regularized Sokeslets. SIAM J Sci Comput 23:1204–1225
MATH
Article
MathSciNet
Google Scholar
Cortez R, Fauci L, Medovikov A (2005) The method of regularized Stokeslets in three dimensions: analysis, validation and application to helical swimming. Phys Fluids 17:1–14
Article
MathSciNet
Google Scholar
de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, Oxford
Google Scholar
Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93:098103
Article
Google Scholar
Hernandez-Ortiz JP, Stoltz CG, Graham MD (2005) Transport and collective dynamics in suspensions of confined swimming particles. Phys Rev Lett 95:204501
Article
Google Scholar
Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20
Article
MathSciNet
MATH
Google Scholar
Hill J, Kalkanci O, McMurry JL, Koser H (2007) Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:068101
Article
Google Scholar
Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57:299–344
MATH
Google Scholar
Hillesdon AJ, Pedley TJ (1996) Bioconvection in suspensions of oxytactic bacteria: linear theory. J Fluid Mech 324:223–259
MATH
Article
Google Scholar
Keane RD, Adrian R (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215
Article
Google Scholar
Kessler JO, Hill NA (1997) Complementarity of physics, biology and geometry in the dynamics of swimming micro-organisms. In: Flyvbjerg H et al. (eds) Physics of biological systems. Springer Lecture Notes in Physics, Springer, Berlin 480:325–340
Kessler JO, Wojciechowski MF (1997) Collective behavior and dynamics of swimming bacteria. In: Shapiro JA, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, pp 417–450
Google Scholar
Kessler JO, Burnett GD, Remick KE (2000) Mutual dynamics of swimming microorganisms and their fluid habitat. In: Christiansen PL, Srensen MP, Scott AC (eds) Nonlinear science at the dawn of the 21st century. Springer Lecture Notes in Physics Springer, Berlin 542:409–426
Kolter R, Greenberg EP (2006) Microbial sciences the superficial life of microbes. Nature 441:300–302
Article
Google Scholar
Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412
Article
Google Scholar
Lega J, Mendelson NH (1999) Control-parameter-dependent Swift–Hohenberg equation as a model for bioconvection patterns. Phys Rev E 59:6267–6274
Article
Google Scholar
Lega J, Passot T (2003) Hydrodynamics of bacterial colonies: a model. Phys Rev E 67:031906
Article
MathSciNet
Google Scholar
Lighthill MJ (1975) Mathematical biofluiddynamics. SIAM, Philadelphia
MATH
Google Scholar
Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S (1995) Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J 69:2154–2162
Google Scholar
Magariyama Y, Sugiyama S, Kudo S (2001) Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol Lett 199:125–129
Article
Google Scholar
Mendelson NH, Bourque A, Wilkening K, Anderson KR, Watkins JC (1999) Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets. J Bact 181:600–609
Google Scholar
Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199
Article
Google Scholar
Nasseri S, Phan–Thien N (1997) Hydrodynamic interaction between two nearby swimming micromachines. Comput Mech 20:551–559
MATH
Article
Google Scholar
Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Ann Rev Fluid Mech 24:313–358
Article
MathSciNet
Google Scholar
Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, New York
MATH
Google Scholar
Ramia M, Tullock DL, Phan-Thien N (1993) The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J 65:755–778
Google Scholar
Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of swimming micro-organisms. Phys Rev Lett 99:058102
Google Scholar
Sambelashvili N, Lau AWC, Cai D (2007) Dynamics of bacterial flow: emergence of spatiotemporal coherent structures. Phys Lett A 360: 507–511
Article
Google Scholar
Shapiro JA, Dworkin M (1997) Bacteria as multicellular organisms. Oxford University Press, New York
Google Scholar
Simha RA, Ramaswamy S (2002a) Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89:058101
Article
Google Scholar
Simha RA, Ramaswamy S (2002b) Statistical hydrodynamics of ordered suspensions of self-propelled particles: waves, giant number fluctuations and instabilities. Physica A 306:262–269
MATH
Article
Google Scholar
Short MB, Solari CA, Ganguly S, Powers TR, Kessler JO, Goldstein RE (2006) Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc Natl Acad Sci (USA) 103:8315–8319
Article
Google Scholar
Sokolov A, Aranson IS, Kessler JO, Goldstein RE (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102
Article
Google Scholar
Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. Proc Natl Acad Sci (USA) 103:1353–1358
Article
Google Scholar
Solari CA, Kessler JO, Goldstein RE (2007) Motility, mixing, and multicellularity. Genet Program Evolvable Mach 8:115–129
Article
Google Scholar
Taylor GI (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc London A 211:225–239
MATH
Article
Google Scholar
Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75:4326–4329
Article
Google Scholar
Turner L, Berg HC (1995) Cells of Escherichia coli swim either end forward. Proc Natl Acad Sci (USA) 92:477–479
Article
Google Scholar
Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE (2005) Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci (USA) 102:2277–2282
Article
Google Scholar
Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229
Article
Google Scholar
Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193
Article
Google Scholar
Wu TY, Brokaw CJ, Brennen C (1975) Swimming and flying in nature. Plenum, New York
Google Scholar
Wu XL, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 84:3017–3020
Article
Google Scholar