Skip to main content

Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations

Abstract

Nearly close-packed populations of the swimming bacterium Bacillus subtilis form a collective phase, the “Zooming BioNematic” (ZBN). This state exhibits large-scale orientational coherence, analogous to the molecular alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations of velocity and vorticity, as measured by both novel and standard applications of particle imaging velocimetry. The appearance of turbulent dynamics in a system which is nominally in the regime of Stokes flow can be understood by accounting for the local energy input by the swimmers, with a new dimensionless ratio analogous to the Reynolds number. The interaction between organisms and boundaries, and with one another, is modeled by application of the methods of regularized Stokeslets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  • Ainley J, Durkin S, Embid R, Boindala P, Cortez R (2007) The method of images for regularized stokeslets. submitted

  • Aranson IS, Sokolov A, Kessler JO, Goldstein RE (2007) Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E 75:040901

    Article  Google Scholar 

  • Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC (2003) E. coli in motion. Springer, New York

    Google Scholar 

  • Blake JR (1971a) A spherical envelope approach to ciliary propulsion. J Fluid Mech 46:199–208

    MATH  Article  Google Scholar 

  • Blake JR (1971b) A note on the the image system for a stokeslet in a no-slip boundary. Proc Camb Philol Soc 70:303–310

    MATH  Google Scholar 

  • Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cisneros L, Dombrowski C, Goldstein RE, Kessler JO (2006) Reversal of bacterial locomotion at an obstacle. Phys Rev E 73:030901

    Article  Google Scholar 

  • Cortez R (2001) The method of regularized Sokeslets. SIAM J Sci Comput 23:1204–1225

    MATH  Article  MathSciNet  Google Scholar 

  • Cortez R, Fauci L, Medovikov A (2005) The method of regularized Stokeslets in three dimensions: analysis, validation and application to helical swimming. Phys Fluids 17:1–14

    Article  MathSciNet  Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  • Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93:098103

    Article  Google Scholar 

  • Hernandez-Ortiz JP, Stoltz CG, Graham MD (2005) Transport and collective dynamics in suspensions of confined swimming particles. Phys Rev Lett 95:204501

    Article  Google Scholar 

  • Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Hill J, Kalkanci O, McMurry JL, Koser H (2007) Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:068101

    Article  Google Scholar 

  • Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57:299–344

    MATH  Google Scholar 

  • Hillesdon AJ, Pedley TJ (1996) Bioconvection in suspensions of oxytactic bacteria: linear theory. J Fluid Mech 324:223–259

    MATH  Article  Google Scholar 

  • Keane RD, Adrian R (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215

    Article  Google Scholar 

  • Kessler JO, Hill NA (1997) Complementarity of physics, biology and geometry in the dynamics of swimming micro-organisms. In: Flyvbjerg H et al. (eds) Physics of biological systems. Springer Lecture Notes in Physics, Springer, Berlin 480:325–340

  • Kessler JO, Wojciechowski MF (1997) Collective behavior and dynamics of swimming bacteria. In: Shapiro JA, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, pp 417–450

    Google Scholar 

  • Kessler JO, Burnett GD, Remick KE (2000) Mutual dynamics of swimming microorganisms and their fluid habitat. In: Christiansen PL, Srensen MP, Scott AC (eds) Nonlinear science at the dawn of the 21st century. Springer Lecture Notes in Physics Springer, Berlin 542:409–426

  • Kolter R, Greenberg EP (2006) Microbial sciences the superficial life of microbes. Nature 441:300–302

    Article  Google Scholar 

  • Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412

    Article  Google Scholar 

  • Lega J, Mendelson NH (1999) Control-parameter-dependent Swift–Hohenberg equation as a model for bioconvection patterns. Phys Rev E 59:6267–6274

    Article  Google Scholar 

  • Lega J, Passot T (2003) Hydrodynamics of bacterial colonies: a model. Phys Rev E 67:031906

    Article  MathSciNet  Google Scholar 

  • Lighthill MJ (1975) Mathematical biofluiddynamics. SIAM, Philadelphia

    MATH  Google Scholar 

  • Magariyama Y, Sugiyama S, Muramoto K, Kawagishi I, Imae Y, Kudo S (1995) Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J 69:2154–2162

    Google Scholar 

  • Magariyama Y, Sugiyama S, Kudo S (2001) Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol Lett 199:125–129

    Article  Google Scholar 

  • Mendelson NH, Bourque A, Wilkening K, Anderson KR, Watkins JC (1999) Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets. J Bact 181:600–609

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199

    Article  Google Scholar 

  • Nasseri S, Phan–Thien N (1997) Hydrodynamic interaction between two nearby swimming micromachines. Comput Mech 20:551–559

    MATH  Article  Google Scholar 

  • Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Ann Rev Fluid Mech 24:313–358

    Article  MathSciNet  Google Scholar 

  • Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, New York

    MATH  Google Scholar 

  • Ramia M, Tullock DL, Phan-Thien N (1993) The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J 65:755–778

    Google Scholar 

  • Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of swimming micro-organisms. Phys Rev Lett 99:058102

    Google Scholar 

  • Sambelashvili N, Lau AWC, Cai D (2007) Dynamics of bacterial flow: emergence of spatiotemporal coherent structures. Phys Lett A 360: 507–511

    Article  Google Scholar 

  • Shapiro JA, Dworkin M (1997) Bacteria as multicellular organisms. Oxford University Press, New York

    Google Scholar 

  • Simha RA, Ramaswamy S (2002a) Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89:058101

    Article  Google Scholar 

  • Simha RA, Ramaswamy S (2002b) Statistical hydrodynamics of ordered suspensions of self-propelled particles: waves, giant number fluctuations and instabilities. Physica A 306:262–269

    MATH  Article  Google Scholar 

  • Short MB, Solari CA, Ganguly S, Powers TR, Kessler JO, Goldstein RE (2006) Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc Natl Acad Sci (USA) 103:8315–8319

    Article  Google Scholar 

  • Sokolov A, Aranson IS, Kessler JO, Goldstein RE (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102

    Article  Google Scholar 

  • Solari CA, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2006) Multicellularity and the functional interdependence of motility and molecular transport. Proc Natl Acad Sci (USA) 103:1353–1358

    Article  Google Scholar 

  • Solari CA, Kessler JO, Goldstein RE (2007) Motility, mixing, and multicellularity. Genet Program Evolvable Mach 8:115–129

    Article  Google Scholar 

  • Taylor GI (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc London A 211:225–239

    MATH  Article  Google Scholar 

  • Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75:4326–4329

    Article  Google Scholar 

  • Turner L, Berg HC (1995) Cells of Escherichia coli swim either end forward. Proc Natl Acad Sci (USA) 92:477–479

    Article  Google Scholar 

  • Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE (2005) Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci (USA) 102:2277–2282

    Article  Google Scholar 

  • Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Article  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  • Wu TY, Brokaw CJ, Brennen C (1975) Swimming and flying in nature. Plenum, New York

    Google Scholar 

  • Wu XL, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 84:3017–3020

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by DOE W31-109-ENG38 and NSF PHY 0551742 at the University of Arizona, NSF DMS 0094179 at Tulane, and the Schlumberger Chair Fund in Cambridge. We should like especially to thank Matti M. Laetsch for her contributions to Section 4, David Bentley for help with Fig. 1, and T.J. Pedley for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John O. Kessler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cisneros, L.H., Cortez, R., Dombrowski, C. et al. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43, 737–753 (2007). https://doi.org/10.1007/s00348-007-0387-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0387-y

Keywords

  • Vorticity
  • Particle Imaging Velocimetry
  • Swimming Speed
  • Particle Imaging Velocimetry Data
  • Collective Dynamic