Skip to main content
Log in

Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A non-buoyant laminar diffusion flame has been studied using laser-induced incandescence (LII) and light extinction measurements. The present flame is established within a laminar boundary layer, producing a complex three-dimensional flow field. This produces a three-dimensional soot concentration field. LII can provide spatially resolved three-dimensional concentration measurements of the soot field, nevertheless it requires calibration. Calibration needs to be conducted under identical conditions to the actual measurements, given the complex interaction between the flow field and soot production. This study reports a calibration procedure that allows the determination of a calibration constant correlating LII signal to soot volume fraction. The potential sources of error are identified and quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brahmi L, Vietoris T, Rouvreau S, Joulain P, David L, Torero J (2005) Microgravity laminar diffusion flame in a perpendicular fuel and oxidizer stream configuration. AIAA J 43(8):1725–1733

    Google Scholar 

  • Dalzell W, Sarofim A (1969) Optical constants of soot and their application to heat-flux calculations. J Heat Transf 91:100–104

    Google Scholar 

  • Dobbins R, Megaridis C (1987) Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3:254–259

    Article  Google Scholar 

  • Fernandez-Pello A, Walther D, Cordova J, Steinhaus T, Quintiere J, Torero J, Ross H (2000) Test method for ranking material flammability in reduced gravity. Space Forum 6:237–244

    Google Scholar 

  • Fuentes A, Legros G, Claverie A, Joulain P, Vantelon JP, Torero J (2007) Interactions between soot and CH* in laminar boundary layer type diffusion flame in microgravity. Proc Combust Inst 31:2685–2692

    Article  Google Scholar 

  • Habib Z, Vervisch P (1988) On the refractive index of soot at flame temperature. Combust Sci Tech 59:261–274

    Article  Google Scholar 

  • Kennedy I (1997) Models of soot formation and oxidation. Prog Energy Combust Sci 23:95–199

    Article  Google Scholar 

  • Konsur B, Megaridis C, Griffin D (1999a) Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combust Flame 116:334–347

    Article  Google Scholar 

  • Konsur B, Megaridis C, Griffin D (1999b) Soot aerosol properties in laminar soot-emitting microgravity nonpremixed flames. Combust Flame 118:509–520

    Article  Google Scholar 

  • Lee S, Tien C (1981) Optical constants of soot in hydrocarbon flames. Proc Combust Inst 18:1159–1166

    Google Scholar 

  • Legros G, Fuentes A, Ben-Abdallah P, Baillargeat J, Joulain P, Vantelon JP, Torero JL (2005) Three-dimensional recomposition of the absorption field inside a nonbuoyant sooting flame. Opt Lett 30:3311–3313

    Article  Google Scholar 

  • Legros G, Joulain P, Vantelon JP, Fuentes A, Torero J (2006) Soot volume fraction measurements in a three-dimensional laminar diffusion flame established in microgravity. Combust Sci Tech 178:813–835

    Article  Google Scholar 

  • Lin K, Faeth G (1999) Shapes of nonbuoyant round luminous laminar-jet diffusion flames in coflowing air. AIAA J 37(6):759–765

    Google Scholar 

  • Lin K, Faeth G, Sunderland P, Urban D, Yuan Z (1999) Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames. Combust Flame 116:415–431

    Article  Google Scholar 

  • Markstein G, DeRis J (1984) Radiant emission and absorption by laminar ethylene and propylene diffusion flames. Proc Combust Inst 20:1637–1646

    Google Scholar 

  • Megaridis C, Konsur B, Griffin D (1996) Soot-field structure in laminar soot-emitting microgravity nonpremixed flames. Proc Combust Inst 26:1291–1299

    Google Scholar 

  • Melton L (1984) Soot diagnostics based on laser heating. Appl Opt 23:2201–2208

    Article  Google Scholar 

  • Mountain R, Mullholland G (1988) Light scattering from simulated smoke agglomerates. Langmuir 4:1321–1326

    Article  Google Scholar 

  • Olson S, T’ien J (2000) Buoyant low-stretch diffusion flames beneath cylindrical pmma samples. Combust Flame 121:439–452

    Article  Google Scholar 

  • Pastor J, Gracía J, Pastor J, Buitrago J (2006) Analysis of calibration tecniques for laser-induced incandescence measurements in flames. Meas Sci Technol 17:3279–3288

    Article  Google Scholar 

  • Rouvreau S, Cordeiro P, Torero J, Joulain P (2002) Numerical evaluation of boundary-layer assumptions used for the prediction of the standoff distance of a laminar diffusion flame. Proc Combust Inst 29:2527–2534

    Article  Google Scholar 

  • Santoro RJ, Shaddix CR (2002) Laser-induced incandescence. In: Kohse-Höinghaus K, Jeffries JB (eds) Applied combustion diagnostics, chap 9. Taylor & Francis, New York, pp 252–286

  • Shaddix C, Smyth K (1996) Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame 107:418–452

    Article  Google Scholar 

  • Snelling D, Smallwood G, Liu F, Gülder Ö, Bachalo W (2005) A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl Opt 44–31:6773–6785

    Article  Google Scholar 

  • Torero J, Vietoris T, Legros G, Joulain P (2002) Estimation of a total mass transfer number from the standoff distance of a spreading flame. Combust Sci Tech 174:187–203

    Article  Google Scholar 

  • Urban D, Yuan Z, Sunderland P, Lin KC, Dai Z, Faeth G (2000) Smoke-point properties of non-buoyant round laminar jet diffusion flames. Proc Combust Inst 28:1965–1972

    Article  Google Scholar 

  • Vander Wal R (1996) Soot precursor material: spatial location via simultaneous LIF-LII imaging and characterization via TEM. Tech. Rep. 198469, NASA

  • Vander Wal R (1997) Laser-induced incandescence measurements in low-gravity. Micrograv Sci Technol 10:66

    Google Scholar 

  • Vander Wal R, Jensen K, Choi M (1997) Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust Flame 109:399–414

    Article  Google Scholar 

  • Vietoris T, Ellzey J, Joulain P, Metha S, Torero J (2000) Laminar diffusion flame in microgravity: the results of the minitexus 6 sounding rocket experiment. Proc Combust Inst 28:2883–2889

    Google Scholar 

  • Xu F, Dai Z, Faeth G (2002) Flame and soot boundaries of laminar jet diffusion flames. AIAA J 40(12):2439–2446

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CNES and ESA. Parabolic flight campaigns took place on board the Novespace A300-ZeroG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. El-Rabii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, A., Legros, G., El-Rabii, H. et al. Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame. Exp Fluids 43, 939–948 (2007). https://doi.org/10.1007/s00348-007-0364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0364-5

Keywords

Navigation