Advertisement

Experiments in Fluids

, Volume 41, Issue 3, pp 425–440 | Cite as

Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity

  • Jens Nørkær SørensenEmail author
  • Igor Naumov
  • Robert Mikkelsen
Research Article

Abstract

The swirling flow between a rotating lid and a stationary cylinder is studied experimentally. The flow is governed by two parameters: the ratio of container height to disk radius, h, and the Reynolds number, Re, based on the disk angular velocity, cylinder radius and kinematic viscosity of the working liquid. For the first time, the onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. A detailed mapping of the transition scenario from steady and axisymmetric flow to unsteady and three-dimensional flow is investigated for 1 ≥ h ≥ 3.5. The flow is characterized by the development of azimuthal modes of different wave numbers. A range of different modes is detected and critical Reynolds numbers and associated frequencies are identified. The results are compared to the numerical stability analysis of Gelfgat et al. (J Fluid Mech 438:363–377, 2001). In most cases, the measured onset of three-dimensionality is in good agreement with the numerical results and disagreements can be explained by bifurcations not accounted for by the numerical stability analysis.

Keywords

Reynolds Number Particle Image Velocimetry Critical Reynolds Number Laser Doppler Anemometry Azimuthal Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research has been supported in part by the INTAS (grant for young scientists no. 03-55-571) and by RFBR (grant no. 04-01-00124).

References

  1. Blackburn HM (2002) Three-dimensional instability and state selection in an oscillatory axisymmetric swirling flow. Phys Fluids 14:3983–3996MathSciNetCrossRefADSGoogle Scholar
  2. Blackburn HM, Lopez JM (2000) Symmetry breaking of the flow in a cylinder driven by a rotating endwall. Phys Fluids 11:2698–2701CrossRefADSGoogle Scholar
  3. Blackburn HM, Lopez JM (2002) Modulated rotating waves in an enclosed swirling flow. J Fluid Mech 465:33–58zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. Brøns M, Voigt LK, Sørensen JN (1999) Streamline topology of axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-covers. J Fluid Mech 401:275–292zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. Brown GL, Lopez JM (1990) Axisymmetric vortex breakdown, Part 2. Physical mechanisms. J Fluid Mech 221:553–576zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. Daube O (1991) Numerical simulation of axisymmetric vortex breakdown in a closed cylinder. Lectures Appl Math 308:131–152MathSciNetGoogle Scholar
  7. Daube O, Sørensen JN (1989) Numerical-simulation of the axisymmetric periodic-flow in a cylindrical tank. Comptes Rendus De L’Academie Des Sciences Serie II 308(5):463–469zbMATHADSGoogle Scholar
  8. Escudier MP (1984) Observations of the flow produced in a cylindrical container by a rotating endwall. Exps Fluids 2:189–196CrossRefGoogle Scholar
  9. Gelfgat AY, Bar-Yoseph PZ, Solan A (2001) Three-dimensional instability of axisymmetric flow in rotating lid-cylinder enclosure. J Fluid Mech 438:363–377zbMATHCrossRefADSGoogle Scholar
  10. Hartnack JN, Brøns M, Spohn A (2000) The role of asymmetric perturbations in steady vortex breakdown bubbles. DCAMM report 628, Technical University of DenmarkGoogle Scholar
  11. Holmes P (1984) Some remarks on chaotic particle paths in time-periodic three dimensional swirling flows. Contemp Math 28:393–404zbMATHGoogle Scholar
  12. Lopez JM (1990) Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J Fluid Mech 221:533–552zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. Lopez JM (2006) Rotating and modulated rotating waves in transitions of an enclosed swirling flow. J Fluid Mech 553:323–546zbMATHCrossRefADSGoogle Scholar
  14. Lopez JM, Perry AD (1992) Axisymmetric vortex breakdown, Part 3. Onset of periodic flow and chaotic advection. J Fluid Mech 234:449–471zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. Marques F, Lopez JM (2001) Precessing vortex breakdown mode in an enclosed cylinder flow. Phys Fluids 13:1679–1682MathSciNetCrossRefADSGoogle Scholar
  16. Okulov VL, Sørensen JN (2006) Stability of helical tip vortices in rotor far wake. Submitted to J Fluid MechGoogle Scholar
  17. Ronnenberg B (1977) Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergeichsstrahlvefahren, angewandt auf Untersuchungen in einer stationären zylinder- symmetrischen Drehströmung mit einen Rückströmgebiet,” Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 19Google Scholar
  18. Serre E, Bontoux P (2002) Vortex breakdown in a three-dimensional swirling flow. J Fluid Mech 459:347–370zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. Sørensen JN, Christensen EA (1995) Direct numerical simulation of rotating fluid flow in a closed cylinder. Phys Fluids 7:764–778zbMATHCrossRefADSGoogle Scholar
  20. Sotiropoulos F, Ventikos Y (2001) The three-dimensional structure of confined swirling flows with vortex breakdown. J Fluid Mech 426:155–175zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. Sotiropoulos F, Ventikos Y, Lackey TC (2001) Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: Šil’nikov’s chaos and the Devil’s Staircase. J Fluid Mech 444:257–297zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. Sotiropoulos F, Webster DR, Lackey TC (2002) Experiments on Lagrangian transport in steady vortex-breakdown bubbles in a confined swirling flow. J Fluid Mech 466:215–248zbMATHCrossRefADSGoogle Scholar
  23. Spohn A, Mory M, Hopfinger EJ (1998) Experiments on vortex breakdown in a confined flow generated by a rotating disk. J Fluid Mech 370:73–99zbMATHCrossRefADSGoogle Scholar
  24. Stevens JL, Lopez JM, Cantwell BJ (1999) Oscillatory flow states in an enclosed cylinder with a rotating endwall. J Fluid Mech 389:101–118zbMATHCrossRefADSGoogle Scholar
  25. Thompson MC, Hourigan K (2003) The sensitivity of steady vortex breakdown bubbles in confined cylinder flows to rotating lid misalignment. J Fluid Mech 496:129–138zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. Tsitverblit N, Kit E (1998) On the onset of unsteadiness in confined vortex flows. Fluid Dyn Res 23:125–152zbMATHMathSciNetCrossRefGoogle Scholar
  27. Ventikos Y (2002) The effect of imperfections on the emergence of three-dimensionality in stationary vortex breakdown bubbles. Phys Fluids 14:L13–L16CrossRefADSGoogle Scholar
  28. Vogel HU (1968) Experimentelle Ergebnisse über die Laminare Strömung in einem zylindrischen Gehäuse mit darin Rotierender Scheibe,” Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 6Google Scholar
  29. Watson JP, Neitzel GP (1996) Numerical evaluation of a vortex-breakdown criterion. Phys Fluids 8:3063–3071zbMATHCrossRefADSGoogle Scholar
  30. Westergaard CH, Buchhave P, Sørensen JN (1993) PIV measurements of turbulent and chaotic structures in a rotating flow using an optical correlator. In: Adrian RJ (ed) Laser techniques and applications in fluid mechanics. Springer, Berlin Heidelberg New York, pp 243–256Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jens Nørkær Sørensen
    • 1
    Email author
  • Igor Naumov
    • 1
    • 2
  • Robert Mikkelsen
    • 1
  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Institute of ThermophysicsSB RASNovosibirskRussia

Personalised recommendations