Skip to main content
Log in

Turbulence measurements in a transonic two-passage turbine cascade

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents detailed turbulence measurements in a two-dimensional, transonic, double passage turbine cascade. Particle image velocimetry was used to obtain mean velocity and turbulence measurements all around a single turbine blade within about 2 mm of the blade and wall surfaces. The passage walls were designed using an optimization procedure so that the blade surface pressure distribution matches that of the blade in an infinite cascade. The resulting experimental model captures much of the complexity of a real turbine stage (including high streamline curvature, strong accelerations, and shocks) in a passage with a continuous wall shape, allowing for high measurement resolution and well controlled boundary conditions for comparison to CFD. The measurements show that in the inviscid regions of the passage the absolute level of the turbulent fluctuations does not change significantly as the flow accelerates, while the local turbulence intensity drops rapidly as the flow accelerates. These results provide a benchmark data set that can be used to improve turbulence models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C :

Blade true chord

C xl :

Blade axial chord

C s :

Smagorinsky constant used in dissipation estimate (=0.17)

d p :

Tracer particle diameter

E :

Estimated error for dissipation rate calculation

k :

Turbulent kinetic energy

k inlet :

Turbulent kinetic energy at inlet (=55 m2/s2)

l :

Integral length scale

Re c,exit :

Reynolds number based on blade chord and exit velocity

Re c,inlet :

Reynolds number based on blade chord and inlet velocity

S :

Distance along a streamline

S ij :

Instantaneous velocity gradient tensor

T :

Turbulent time scale (=k/ε)

Tu :

Turbulence intensity [=√(2/3 k)/√(U 2 + V 2)]

u s, u n′:

RMS velocities in the streamwise and cross-stream directions

u i , u j :

Instantaneous velocity components

U :

Mean velocity averaged across inlet (=117 m/s)

U, u′:

Local mean and rms velocities in the X-direction

V, v′:

Local mean and rms velocities in the Y-direction

X, Y :

Fixed Cartesian system used for measurements and calculations

Δ:

Filter size (= IR size for PIV measurements)

Δx :

Grid spacing used for derivative calculations

ε :

Dissipation rate

ε 0 :

Average dissipation rate from measurements at inlet (=35,000 m2/s3)

η :

Kolmogorov length scale

λ :

Taylor microscale

μ :

Dynamic viscosity

ρ p :

Density of tracer particles

τ ij :

Sub-grid scale stress tensor

τ p :

Particle relaxation time

υ :

Kinematic viscosity

ξ :

PIV displacement error

References

  • Ames FE (1994) Experimental study of vane heat transfer and aerodynamics at elevated levels of turbulence. NASA CR 4633

  • Bailey DA (1980) Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage. J Eng Power 102:88–95

    Article  Google Scholar 

  • Binder A, Schroeder TH, Hourmouziadis J (1989) Turbulence measurements in a multistage low-pressure turbine. J Turbomach 111:153–161

    Google Scholar 

  • Bryanston-Cross PJ, Towers CE, Judge TR, Towers DP, Harasgama SP, Hopwood ST (1992) The application of particle image velocimetry (PIV) in a short-duration transonic annular turbine cascade. J Turbomach 114:504–509

    Article  Google Scholar 

  • Chaluvadi VSP, Kalfas AI, Hodson HP, Ohyama H, Watanabe E (2003) Blade row interaction in a high-pressure steam turbine. J Turbomach 125:14–24

    Article  Google Scholar 

  • Christensen KT (2004) The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp Fluids 36:484–497

    Article  Google Scholar 

  • Durbin PA (1996) On the kε stagnation point anomaly. Int J Heat Fluid Flow 17:89–90

    Article  Google Scholar 

  • Durbin PA, Pettersson Reif BA (2001) Statistical theory and modeling for turbulent flow. Wiley, New York

    Google Scholar 

  • Giess PA, Kost F (1997) Detailed experimental survey of the transonic flow field in a rotating annular turbine cascade. In: Proceedings of the 2nd European conference on turbomachinery, Antwerpen, March 1997, pp 1–8

  • Giess PA, Kost F, Dannhauer A (2000) Transsonische strömung in einem gasturbinenlaufrad—experimentelle untersuchungen im ebenen gitter und im rotierenden ringgitter. Forsch Ingenieurwesen 66:107–120

    Article  Google Scholar 

  • Göttlich E, Neumayer F, Woisetschläger J, Sanz W, Heitmeir F (2004) Investigation of stator-rotor interaction in a transonic turbine stage using laser doppler velocimetry and pneumatic probes. J Turbomach 126:297–305

    Article  Google Scholar 

  • Göttlich E, Woisetschläger J, Peringer P, Hampel B, Heitmeir F (2005) Investigation of vortex shedding and wake-wake interaction in a transonic turbine stage using laser-doppler-velocimetry and particle-image-velocimetry. In: Proceedings of GT2005 ASME Turbo Expo, Reno-Tahoe Nevada, June 2005, pp 1–10

  • Gregory-Smith DG, Walsh JA, Graves CP, Fulton KP (1988) Turbulence measurements and secondary flows in a turbine rotor cascade. J Turbomach 110:479–485

    Google Scholar 

  • Gregory-Smith DG, Cleak JGE (1992) Secondary flow measurements in a turbine cascade with high inlet turbulence. J Turbomach 114:173–183

    Article  Google Scholar 

  • Han D (2001) Study of turbulent nonpremixed jet flames using simultaneous measurements of velocity and Ch distribution. Technical Report TSD-134, Stanford University

  • Herbert GJ, Tiederman WG (1990) Comparison of steady and unsteady secondary flows in a turbine stator cascade. J Turbomach 112:625–632

    Article  Google Scholar 

  • Higashimori H, Hasagawa K, Sumida K, Suita T (2004) Detailed flow study of Mach number 1.6 high transonic flow with a shock wave in a pressure ratio 11 centrifugal compressor impeller. J Turbomach 126:473–481

    Article  Google Scholar 

  • Lang H, Mørck T, Woisetschläger J (2002) Stereoscopic particle image velocimetry in a transonic turbine stage. Exp Fluids 32:700–709

    Google Scholar 

  • Laskowski G, Vicharelli A, Medic G, Elkins C, Eaton JK, Durbin PA (2005) Inverse design of and experimental measurements in a double passage transonic turbine cascade model. J Turbomach 127:619–626

    Article  Google Scholar 

  • Launder BE, Kato M (1993) Modeling flow-induced oscillations in turbulent flow around a square cylinder. ASME FED 157:189–199

    Google Scholar 

  • Medic G, Durbin PA (2002a) Toward improved prediction of heat transfer on turbine blades. J Turbomach 124:187–192

    Article  Google Scholar 

  • Medic G, Durbin PA (2002b) Toward improved film cooling prediction. J Turbomach 124:193–199

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8:1406–1416

    Article  Google Scholar 

  • Meunier P, Leweke T (2003) Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp Fluids 35:408–421

    Article  Google Scholar 

  • Miller RW (1983) Flow measurement engineering handbook. McGraw-Hill Book Company, New York

    Google Scholar 

  • Miller RJ, Moss RW, Ainsworth RW, Horwood CK (2003) Time-resolved vane-rotor interaction in a high-pressure turbine stage. J Turbomach 125:1–13

    Article  Google Scholar 

  • Moore J, Shaffer DM, Moore JG (1987) Reynolds stresses and dissipation mechanisms downstream of a turbine cascade. J Turbomach 109:258–267

    Google Scholar 

  • Perdichizzi A, Ubaldi M, Zunino P (1992) Reynolds stress distribution downstream of a turbine cascade. Exp Therm Fluid Sci 5:338–350

    Article  Google Scholar 

  • Priddy WJ, Bayley FJ (1988) Turbulence measurements in turbine blade passages and implications for heat transfer. J Turbomach 110:73−79

    Google Scholar 

  • Radomsky RW, Thole KA (2000a) Flowfield measurements for a highly turbulent flow in a stator vane passage. J Turbomach 122:255–262

    Article  Google Scholar 

  • Radomsky RW, Thole KA (2000b) Measurements and predictions of a highly turbulent flow field in a turbine vane passage. J Fluids Eng 122:666–676

    Article  Google Scholar 

  • Raffel M, Höfer H, Kost F, Willert C, Kompenhans J (1996) Experimental aspects of PIV measurements of transonic flow fields at a trailing edge model of a turbine blade. In: Proceedings of the 8th international symposium on applications of laser techniques to fluid mechanics, July 1996, Lisbon, pp 28.1.1–28.1.10

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry, a practical guide. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Saarenrinne P, Piirto M (2000) Turbulent kinetic energy dissipation rate from PIV velocity vector fields. Exp Fluids 29:300–307

    Article  Google Scholar 

  • Sheng J, Meng H, Fox RO (2000) A large eddy PIV method for turbulence dissipation rate estimation. Chem Eng Sci 55:4423–4434

    Article  Google Scholar 

  • Ubaldi M, Zunino P, Cattanei A (1994) Relative flow and turbulence measurements within and downstream of an axial flow rotor. Exp Therm Fluid Sci 9:186–196

    Article  Google Scholar 

  • Uzol O, Chow YC, Katz J, Meneveau C (2002a) Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices. Exp Fluids 33:909–919

    Google Scholar 

  • Uzol O, Chow YC, Katz J, Meneveau C (2002b) Experimental investigation of unsteady flow within a two-stage axial turbomachine using particle image velocimetry. J Turbomach 124:542–552

    Article  Google Scholar 

  • Wernet MP (2000) Development of digital particle imaging velocimetry for use in turbomachinery. Exp Fluids 28:97–115

    Article  Google Scholar 

  • Wernet MP, Bright MM, Skoch GJ (2001) An investigation of surge in a high-speed centrifugal compressor using digital PIV. J Turbomach 123:418–428

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  Google Scholar 

  • Wittig S, Dullenkopf K, Schulz A, Hestermann R (1987) Laser-doppler studies of the wake-effected flow field in a turbine cascade. J Turbomach 109:170–176

    Article  Google Scholar 

  • Zunino P, Ubaldi M, Satta A (1987) Measurements of secondary flows and turbulence in a turbine cascade passage. ASME Paper No. 87-GT-132

Download references

Acknowledgments

This work was funded by the Air Force Office of Scientific Research through contract number F49620-02-1-0284 monitored by Dr. Thomas Beutner. Early funding for the apparatus development was provided by the General Electric Corporation through the University Strategic Alliance Program. Drs Paul Durbin, Chris Elkins, Gorazd Medic, Greg Laskowski, and Paul Kodzwa, and Mr. Lakhbir Johal made substantial contributions to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Vicharelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicharelli, A., Eaton, J.K. Turbulence measurements in a transonic two-passage turbine cascade. Exp Fluids 40, 897–917 (2006). https://doi.org/10.1007/s00348-006-0127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-006-0127-8

Keywords

Navigation