Skip to main content
Log in

Frequency response of a cold-wire in a flow seeded with oil particles

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experiments have been carried out to investigate the effects of aging on the frequency response of a fine cold-wire located in a flow seeded with oil particles used for laser Doppler anemometry. Transfer functions are shown to depend strongly on the running time. Photo-micrographs show that the contamination effect is due to discrete droplets, the diameter of which increases with running time. Reduction of frequency response is shown to affect at first the high-frequency range and then an intermediate range of frequencies that are larger than the inverse of the oil droplets time constant. Good agreement is found between experimental results and predictions derived from a simple model of the contaminated wire. This contamination process requires testing and cleaning the wire steadily in order to keep a significant frequency response and, if needed, to correct temperature fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity (m2 s−1)

c :

Thermal capacity (J kg−1 K−1)

d :

Wire diameter (m)

dB :

Decibel attenuation

dZ :

Fourier–Stieltjes temperature component, K

D G :

Droplet diameter (m)

H(n):

Transfer function

l :

Length (m)

M :

Time constant (s)

n :

Frequency (Hz)

N :

Number of droplets

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

t :

Time (s)

T :

Temperature (K)

λ:

Thermal conductivity (W m−1 K−1)

ρ:

Density (kg m−3)

c:

Conduction

e:

Elementary

g:

Fluid

G:

Droplet

0:

Prong

p:

Plateau

w:

Wire

References

  • Attoui M, Ren KF, Girasole T, Garo A, Gouesbet G, Grehan G (1999) Détermination de la granulométrie et de la concentration d’un aérosol submicronique par mesure du coefficient d’extinction à plusieurs longueurs d’onde. 15e Congrès Français sur les Aérosols, Paris 8–9 décembre

  • Bruun HH (1995) Hot-wire anemometry, Oxford Science Publications. Oxford 7:231–233

    Google Scholar 

  • Freymuth P (1979) Engineering estimates of heat conduction loss in constant temperature thermal sensors. TSI Quaterly 5:3–9

    Google Scholar 

  • Fulachier L (1978) Hot wires measurements in low speed heated flows. Proceedings of the Dynamic Flow Conference, Marseille

  • Heist DK, Castro IP (1998) Combined laser-Doppler and cold wire anemometry for turbulent heat flux measurement. Experiments in Fluids 24:375–381

    Article  Google Scholar 

  • La Rue JC, Deaton T, Gibson CH (1975) Measurement of high frequency turbulent temperature. Rev Sci Instr 46:757–764

    Article  Google Scholar 

  • Lecordier J-C, Petit C, Paranthoën P (1981) Influence de la conduction sur la fonction de transfert des fils froids dans les très basses fréquences. Lett Heat Mass Trans 8:103–114

    Article  Google Scholar 

  • Lecordier J-C, Dupont A, Gajan P, Paranthoën P (1984) Correction of temperature fluctuation measurements using cold wires. J Phys E 17:307–311

    Article  Google Scholar 

  • Paranthoën P, Lecordier J-C, Petit C (1982) Influence of dust contamination on frequency response of wire resistance thermometers. DISA Info 27:36–37

    Google Scholar 

  • Perry AE, Smits AJ, Chong MS (1979) The effect of certain low frequency phenomena on the calibration of hot-wires. J Fluid Mech 90:415–439

    Article  Google Scholar 

  • Pietri L, Amielh M, Anselmet F (2000) Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and laser Doppler anemometry. Int J Heat Fluid Flow 21:22–36

    Article  Google Scholar 

  • Schacher G, Fairall CW (1976.) Use of resistance wires for turbulence measurements in marine environment. Rev Sci Instr 47:703–707

    Article  Google Scholar 

  • Smits AJ, Perry AE, Hoffmann PJ (1978) The response of temperature fluctuations of constant current hot-wire anemometer. J Phys E 11:909–914

    Article  Google Scholar 

  • Steyer A, Guenoun P, Beysens D, Fritter D, Knobler CM (1990) Growth of droplets on 1D surface: experiment and simulation. Europhysics Lett 12:211–215

    Article  Google Scholar 

  • Thole KA, Bogard DG (1993) Simultaneous temperature and velocity measurements. Meas Sci Technol 5:435–439

    Article  Google Scholar 

  • Weiss F (1999) Etude expérimentale de la diffusion de la chaleur en aval d’une source linéaire placée dans une allée de Bénard-von Karman. Thèse Université de Rouen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Paranthoën.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, F., Paranthoën, P. & Lecordier, JC. Frequency response of a cold-wire in a flow seeded with oil particles. Exp Fluids 39, 935–940 (2005). https://doi.org/10.1007/s00348-005-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0032-6

Keywords

Navigation