Skip to main content
Log in

Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Two-color laser-induced fluorescence can be use to perform space-averaged flying droplet temperature measurements. In this paper, the possibility to extend this technique to the measurement of the temperature distribution within a moving combusting droplet is considered and demonstrated. This technique may provide new experimental data related to the heat diffusion in liquid fuel droplets injected in high-temperature gas streams, for example, in combustion chambers. The main principles of the technique and the data reduction process are discussed, and a test on combusting a monodisperse ethanol droplets (200 μm in diameter) stream is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a i , b i :

temperature sensitivity coefficients for i th spectral band

C :

molecular concentration of fluorescent tracer

D :

droplet diameter

I 0 :

incident laser beam intensity

I f :

fluorescence intensity

K opt :

optical constant

K spec :

spectroscopic constant

V c :

collection volume

R f :

fluorescence ratio

T :

absolute temperature

T i :

injection temperature

V i :

injection velocity

( x, y , z):

spatial coordinates

β :

temperature sensitivity coefficient

References

  • Chiang CH, Sirignano WA (1993) Axisymmetric calculation of three-droplets interactions. Atomization Sprays 3:91–107

    CAS  Google Scholar 

  • Chiang CH, Raju MS, Sirignano WA (1992) Numerical analysis of convecting, vaporizing, fuel droplet with variable properties. Int J Heat Mass Transfer 35:1307–1324

    Article  Google Scholar 

  • Copetta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25:1-15

    CAS  Google Scholar 

  • Gaskey S, Vacus P, David R, Villermaux J (1990) A method for the study of turbulent mixing using fluorescence spectroscopy. Exp Fluids 9:137–147

    CAS  Google Scholar 

  • Lavieille P, Lemoine F, Lebouché M (2002) Experimental investigation on interacting low evaporating droplets temperature in linear stream using two colors laser induced fluorescence. Combust Sci Technol 174: 117–142

    CAS  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Lebouché M (2001a) Evaporating and combusting droplet temperature measurements using two colors laser-induced fluorescence. Exp Fluids 31:45–55

    Article  Google Scholar 

  • Lavieille P, Lemoine F, Lebouché M (2001b) Combusting droplets temperature measurements using two colors laser-induced fluorescence: preliminary results and perspectives. CR Acad Sci Paris IIb 329:557–664

    Article  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Virepinte JF, Lebouché M (2000) Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence. Exp Fluids 29:429–437

    Article  Google Scholar 

  • Lemoine F, Antoine Y, Wolff M, Lebouché M (1999) Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA. Exp Fluids 26:315–323

    Article  Google Scholar 

  • Lu QZ, Melton LA (2000) Measurement of transient temperature field within a falling droplet. AIAA J 38:95–101

    CAS  Google Scholar 

  • Mulholland JA, Srivastava RK, JOL Wendt (1988) Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse stream. AIAA J 26:1231–1237

    CAS  Google Scholar 

  • Muray AM, Melton LA (1985) Fluorescence methods for determination of temperature in fuel sprays. Appl Opt 24:2783–2787

    Google Scholar 

  • Poo JY, Ashgriz N (1991) Variation of drag coefficient in an interacting drop stream. Exp Fluids 11:1–8

    CAS  Google Scholar 

  • Sazhin SS, Dombrovsky LA, Krutitski P, Sazhina EM, Heikal MR (2002) Analytical and numerical modelling of convective and radiative heating of fuel droplets in diesel engines. In: Proc international heat transfer conference, 18–23 August 2002, Grenoble, France (on CD)

  • Silverman MA, Dunn-Rankin D (1994) Experimental investigation of a rectilinear droplet stream flame. Combust Sci Technol 100:57–73

    CAS  Google Scholar 

  • Virepinte JF, Biscos Y, Lavergne G, Magre P, Collin G (2000) A rectilinear droplet stream in combustion: droplet and gas phase properties. Combust Sci Technol 150:143–159

    CAS  Google Scholar 

  • Wells MR, Melton LA (1990) Temperature measurements of falling droplets. J Heat Transfer 112:1008–1013

    CAS  Google Scholar 

  • Winter M, Melton LA (1990) Measurement of internal circulation in droplet using laser-induced fluorescence. Appl Opt 29:4574–4577

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Community in the framework of the MUSCLES contract, growth project GRD1-2001-40198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lemoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castanet, G., Lavieille, P., Lebouché, M. et al. Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence. Exp Fluids 35, 563–571 (2003). https://doi.org/10.1007/s00348-003-0702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0702-1

Keywords

Navigation