Skip to main content
Log in

Fluorescence depolarisation monitoring of liquid flow before and after exiting a slit nozzle

  • Original Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Steady-state fluorescence depolarisation was used to study the hydrodynamics of ethylene glycol flow inside a quartz slit nozzle for 24 mm (Re~200) and outside as a free thin jet, for 14 mm. The polarisation profiles (over 1000 points) allowed direct evaluation of the velocity gradient within the flowing liquid from this molecular-level probe. Inside the nozzle two lateral boundary layers were observed. The velocity profile was flattened, which was attributed to strong chemical interactions with the walls of the cell. Within the jet, four polarisation profile maxima were observed for the first time, corresponding to two internal converging streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

  • Andrade ENC (1939) The velocity distribution in a liquid-into-liquid jet. 2. The plane jet. Proc Phys Soc 51:784–93

    Article  Google Scholar 

  • Bain AJ, Chandna P, Butcher G (1996) Strong molecular alignment in anisotropic fluid media. Chem Phys Lett 260:441–446

    Article  CAS  Google Scholar 

  • Bain AJ , Chandna P, Butcher G, Bryant J (2000) Picosecond polarised fluorescence studies of anisotropic fluid media. 2. Experimental studies of molecular order and motion in jet aligned rhodamine 6G and resorufin solutions. J Chem Phys 112:10435–10449

    Article  CAS  Google Scholar 

  • Bojarski P, Matczuk A, Bojarski C, Kawski A, Kuklinski B, Zurkowska G, Diehl H (1996) Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution. Chem Phys 210:485–499

    Article  CAS  Google Scholar 

  • Brom G (1976) Contribution au dévelopment du laser à colorant à emission continue. Étude dún dispositif de circulation de colorant à jet libre, R133/76. Institut Franco-Allemand de Recherches de Saint-Louis, Saint-Louis, France

  • Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at a fluid–solid interface. Phys Rev Lett 86:803–806

    Article  CAS  PubMed  Google Scholar 

  • Fazer RP, Dombrowski N, Eisenklam P (1954) Vibrations as a cause of disintegration in liquid sheets. Nature 173:495

    Google Scholar 

  • Feofilov PP (1961) The physical basis of polarised emission. Consultants Bureau, New York

  • Grunefeld G, Finke H, Bartelheimer J, Kruger S (2000) Probing the velocity fields of gas and liquid phase simultaneously in a two-phase flow. Exp Fluids 29:322–330

    Article  CAS  Google Scholar 

  • Härri H, Leutwyler S, Schumacher E (1982) Nozzle design yielding interferometrically flat fluid jets for use in single mode dye-lasers. Rev Sci Instrum 53:1855–1858

    Article  Google Scholar 

  • Incropera FP, DeWitt P (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

  • Jabbarzadeh A, Atkinson JD, Tanner RJ (2000) Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Phys Rev E 61:690–699

    Article  CAS  Google Scholar 

  • Kenyon AJ, McCaffery AJ, Quintella CM (1991a) Fluorescence depolarisation as a probe of molecular dynamics within liquid jets. Mol Phys 72:965–979

    Google Scholar 

  • Kenyon AJ, McCaffery AJ, Quintella CM, Winkel JF (1991b) A study of molecular dynamics within liquid flows using fluorescence depolarisation. Mol Phys 74:871–884

    Google Scholar 

  • Knox RS (1968) Theory of polarisation quenching by excitation transfer. Physica 39:361

    Article  CAS  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York

  • Massey BS (1989) Mechanics of fluids, 6th edn. Van Nostrand, Wokingham

  • McFarland BB (1967) Laser 2nd-harminic-induced stimulated emission of organic dyes. Appl Phys Lett 10:208

    CAS  Google Scholar 

  • Muhlfriedel K, Baumann KH (2000) Concentration measurements during mass transfer across liquid-phase boundaries using planar laser induced fluorescence (PLIF). Exp Fluids 28:279–281

    CAS  Google Scholar 

  • Pit R, Hervet H, Leger L (1999) Friction and slip of a simple liquid at a solid wall. Tribol Lett 7:147–152

    Article  CAS  Google Scholar 

  • Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane–solid interfaces. Phys Rev Lett 85:980–983

    CAS  PubMed  Google Scholar 

  • Quintella CM, Gonçalves CC, Pepe I, Lima AMV, Musse APS (2001) Intermolecular alignment dependence of ethylene glycol flow on the chemical nature of the solid surface (borosilicate and SnO2). J Braz Chem Soc 12:780–786 (available on line in English at http://jbcs.sbq.org.br/jbcs/2001/vol12_n6/14.pdf)

    Google Scholar 

  • Quintella CM, Gonçalves CC, Pepe I, Lima AMV, Musse APS (2002) An automated system to acquire fluorescence, polarisation and anisotropy maps within liquid flows. J Autom Methods Manage Chem 24:31–39 (available on line in English at http://taylorandfrancis.metapress.com)

    Google Scholar 

  • Quintella CM, Lima AMV, Gonçalves CC, Watanabe YN, Mammana AP, Schreiner MA, Pepe I, Pizzo AM (2003) Fluorescence depolarisation and contact angle investigation of dynamic and static interfacial tension of liquid crystal display materials. J Colloid Interface Sci, in press

  • Scully A, Matsumoto A, Hirayama S (1991) A time resolved fluorescence study of electronic excitation-energy transport in concentrated dye solutions. Chem Phys 157:253–269

    Article  CAS  Google Scholar 

  • Squire HB (1953) Investigation of the instability of a moving liquid film. Brit J Appl Phys 4:167–9

    Article  Google Scholar 

  • Sun M, Ebner C (1992a) Molecular dynamics study of flow at a fluid–wall interface. Phys Rev Lett 69:3491–3494

    Article  PubMed  Google Scholar 

  • Sun M, Ebner C (1992b) Molecular dynamics simulation of compressible fluid-flow in two-dimensional channels. Phys Rev A 46:4813–4818

    Article  PubMed  Google Scholar 

  • Taylor GI (1959) The dynamics of thin sheets of fluid. 3. Disintegration of fluid sheets. Proc Royal Soc London A 253:313–321

    Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the support of this work. APSM acknowledges an undergraduate research fellowship from PIBIC-CNPq and CNPq. CMQ acknowledges both a PhD and a senior research scholarship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Quintella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintella, C.M., Musse, A.P.S., Gonçalves, C.C. et al. Fluorescence depolarisation monitoring of liquid flow before and after exiting a slit nozzle. Exp Fluids 35, 41–48 (2003). https://doi.org/10.1007/s00348-003-0620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0620-2

Keywords

Navigation