Skip to main content
Log in

Corona-induced electrohydrodynamic instabilities in low conducting liquids

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The rose-window electrohydrodynamic (EHD) instability has been observed when a perpendicular field with an additional unipolar ion injection is applied onto a low conducting liquid surface. This instability has a characteristic pattern with cells five to 10 times greater than those observed in volume instabilities caused by unipolar injection. We have used corona discharge from a metallic point to perform some measurements of the rose-window instability in low conducting liquids. The results are compared to the linear theoretical criterion for an ohmic liquid. They confirmed that the minimum voltage for this instability is much lower than that for the interfacial instability in high conducting liquids. This was predicted theoretically in the dependence of the critical voltage as a function of the non-dimensional conductivity. It is shown that in a non-ohmic liquid the rose window appears as a secondary instability after the volume instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

References

  • Ahmed El-Haddad AT, Fornazéro J, Mesnard G (1980) Mécanismes de base de la déformation cellulaire d'une couche mince isolante liquide soumise à un flux de charges. Phys Chem Liq 9:201–218

    Google Scholar 

  • Atten P (1975) Stabilité des liquides de faible conductivité. J Mécan 14:461–495

    Google Scholar 

  • Atten P (1996) On the use of an ionic pump in a convector heater. IEEE Trans Ind Appl 32:80–89

    Article  Google Scholar 

  • Atten P, Koulova–Nenova D (1996) EHD instability of insulating liquids due to charge injection from the free surface. In: Conference Record of the Twelfth International Conference on Dielectric Liquids (ICDL '96), Roma, Italy. IEEE Dielectrics and Electrical Insulation Society, pp 476–479

  • Atten P, Koulova-Nenova D (1999) On the instability between two layers of conducting and insulating liquids subjected to a DC field. In: Proceedings of Thirteenth International Conference on Dielectric Liquids (ICDL '99), Nara, Japan. IEEE Dielectrics and Electrical Insulation Society, pp 277–280

  • Atten P, Lacroix JC (1979) Non-linear hydrodynamic stability of liquids subjected to unipolar injection. J Mécan 38:469–510

    Google Scholar 

  • Atten P, Moreau R (1972) Stabilité électrohydrodynamique des liquides isolants soumis à une injection unipolaire. J Mécan 11:471–520

    Google Scholar 

  • Castellanos A, Zhakin AI, Watson PK, Atten P, Chang JS (1998) Electrohydrodynamics. Springer-Verlag, Berlin Heidelberg NewYork

  • Chu XL, Velarde MG, Castellanos A (1989) Dissipative hydrodynamic oscillators. III: Electrohydrodynamic interfacial waves. Il. Nuovo Cimento 11D:727–737

    Google Scholar 

  • Coelho R, Debeau J (1971) Properties of the tip–plane configuration. J Phys D: Appl Phys 4:1266–1280

    Google Scholar 

  • El-Dib YO (1999) Nonlinear stability of an electrified interface supporting surface charges between two viscous fluids. J Colloid Interface Sci 210:103–117

    CAS  PubMed  Google Scholar 

  • Felici NJ, Tobazeon RE (1981) Charge carrier elimination and production by electrodyalitic polymers in contact with dielectric liquids. J Electrost 11:135–161

    CAS  Google Scholar 

  • Giacometti JA (1987) Radial current–density distributions and sample charge uniformity in a corona triode. J Phys D: Appl Phys 20:675–683

    Google Scholar 

  • Giacometti JA, Sinézio J (1990) Constant current corona triode with grid voltage control. Application to polymer foil charging. Rev Sci Instrum 61:1143–1150

    CAS  Google Scholar 

  • González H, Néron de Surgy G, Chabrerie JP (1994) Influence of bounded geometry on electrocapillary instability. Phys Rev B 50:2520–2528

    Article  Google Scholar 

  • Herrick CS (1974) Electroconvection cells in dielectric liquids interfaced with conducting fluids. Proc Roy Soc Lond A 336:487–494

    CAS  Google Scholar 

  • Hish MN, Oskam HJ (eds) (1978) Gaseous electronics, vol I. Electrical discharges. Academic Press, New York

  • Koulova-Nenova D, Atten P (1997) EHD instability of air/liquid two liquid layer system under unipolar charge injection. J Electrost 40/41:179–184

    Google Scholar 

  • Koulova-Nenova D, Atten P (1998) EHD convective and interfacial instabilities of conducting/insulating two liquid layer system with deformable interface. In: Proceedings of the International Workshop on Electrical Conduction, Convection and Breakdown in Fluids, Universidad de Sevilla. University of Seville, Seville, Spain, pp 65–69

  • Lacroix JC, Atten P, Hopfinger EJ (1975) Electroconvection in a dielectric liquid layer subjected to unipolar injection. J Fluid Mech 69:539–563

    Google Scholar 

  • Malraison B, Atten P (1991) Instabilité électrohydrodynamique due à l'injection d'ions à la surface libre d'un liquid isolant. J Phys III 1:1243–1249

    Google Scholar 

  • Melcher JR (1963) Field-coupled surface waves. The MIT Press, Cambridge, Mass.

  • Melcher JR, Schwarz WJ Jr (1968) Interfacial relaxation overstability in a tangential electric field. Phys Fluids 11:2604–2616

    Google Scholar 

  • Melcher JR, Smith CV Jr (1969) Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys Fluids 12:778–790

    Google Scholar 

  • Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann Rev Fluid Mech 1:111–146

    Google Scholar 

  • Néron de Surgy G (1995) Étude des instabilités électrocapillaires. Application aux sources d'ions et d'électrons. These de doctorat, Université de Paris 6

  • Néron de Surgy G, Chabrerie JP, Denoux O, Wesfreid JE (1993) Linear growth of instabilities on a liquid metal under normal electric field. J Phys II 3:1201–1225

    Google Scholar 

  • Pérez AT (1997) Rose-window instability in low conducting liquids. J Electrost 40/41:141–146

    Google Scholar 

  • Pontiga F, Castellanos A (2000) Oscillatory instability in a plane of nonpolar liquid subjected to an electric field. In: 2000 Annual Report of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE Dielect Insulat Soc 97–100

  • Pontiga F, Castellanos A, Malraison B (1995) Some considerations on the instabilities of nonpolar liquids subjected to charge injection. Phys Fluids 7:1348–1356

    CAS  Google Scholar 

  • Schneider JM, Watson PK (1970) Electrohydrodynamic stability of space-charge-limited currents in dielectric liquids. I. Theoretical study. Phys Fluids 13:1948–1954

    CAS  Google Scholar 

  • Vega F, Pérez AT (1999a) EHD instabilities induced by corona discharge using a triode configuration. In: Proceedings of the Société Française d'Electrostatique, Poitiers. S.F.E., pp 224–228

  • Vega F, Pérez AT (1999b) Measurements of electric current through a liquid–air interface in corona discharge. In: 1999 Annual Report of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE Dielect Insulat Soc II:818–821

    Google Scholar 

  • Vega F, Pérez AT (2002) Instability in a non-ohmic/ohmic fluid interface under a perpendicular electric field and unipolar injection. Phys Fluids 14:2738–2751

    CAS  Google Scholar 

  • Watson PK, Clancy TM (1965) Electron injection technique for investigating processes in insulating liquids and solids. Rev Sci Instrum 36:217–222

    CAS  Google Scholar 

  • Watson PK, Schneider JM, Till HR (1970) Electrohydrodynamic stability of space-charge-limited currents in dielectric liquids. II. Phys Fluids 13:1955–1961

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Francisco Pontiga for fruitful discussions and "Taller de la Facultad de Física" of the University of Seville for technical assistance. This work has been carried out with financial support from the Spanish Government (Ministerio de Ciencia y Tecnologïa, MCYT) under research project BFM2000-1056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, F., Pérez, A.T. Corona-induced electrohydrodynamic instabilities in low conducting liquids. Exp Fluids 34, 726–735 (2003). https://doi.org/10.1007/s00348-003-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0616-y

Keywords

Navigation