Skip to main content
Log in

Retinale optische Kohärenztomographie-Biomarker bei demenziellen Erkrankungen

Retinal optical coherence tomography biomarkers in dementia

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Im Rahmen der Alterung der Gesellschaft ist von einer steigenden Prävalenz und Inzidenz verschiedener demenzieller Erkrankungen in der Bevölkerung auszugehen. Um Patient*innen frühzeitig identifizieren und einer Therapie zuführen zu können, sind flächendeckende, nichtinvasive und niederschwellig zu erreichende Screeningmethoden vonnöten. Diese stehen jedoch bis dato nicht zur Verfügung. Es wurde bereits eine Vielzahl potenzieller Biomarker in der hochauflösenden optischen Kohärenztomographie (OCT) identifiziert, die mit dem Vorliegen demenzieller Erkrankungen assoziiert zu sind.

Ziel der Arbeit

Er erfolgen eine Zusammenfassung von OCT-Biomarkern bei demenziellen Erkrankungen und eine Diskussion ihrer Eignung für flächendeckende Screeninguntersuchungen.

Methoden

Es erfolgte eine Literaturrecherche in PubMed bis März 2023 mit den Suchbegriffen „Dementia“, „mild cognitive impairment“, „OCT“, „OCT angiography“, „retinal biomarkers“. Relevante Publikationen wurden identifiziert und zusammengefasst.

Ergebnisse

In einer Vielzahl von Populations- und klinischen Studien konnten lediglich unspezifische Veränderung in der OCT und OCT-Angiographie (OCT-A) bei Patienten*innen mit (prä)demenziellen Erkrankungen nachgewiesen werden. Hierzu zählen die Reduktion der Dicke der peripapillären Nervenfaserschicht, des Ganglienzellkomplexes und der zentralen Netzhaut. Zudem zeigten sich in der OCT‑A eine reduzierte Gefäßdichte und eine vergrößerte foveale avaskuläre Zone (FAZ).

Schlussfolgerungen

Die bis dato identifizierten OCT-Biomarker sind unspezifisch, und bislang gibt es keine OCT- oder OCT-A-Signatur bestimmter Demenzformen. Größere, longitudinale Studien sind notwendig, um derartige Signaturen, die spezifischer sind, v. a. für Frühformen demenzieller Erkrankung zu entwickeln und ihren prognostischen Wert zu identifizieren. Erst dann ist ein Einsatz im Rahmen flächendeckender Screeninguntersuchungen denkbar.

Abstract

Background

Due to the general aging of society, the prevalence and incidence of dementia are expected to increase considerably. In order to timely identify patients and assess their need for treatment and/or supportive measures, comprehensive and easy access screening methods are required, which, however, are yet to be developed. To date, several biomarkers for the presence of dementia on high-resolution spectral domain optical coherence tomography (OCT) and OCT angiography (OCT-A) images were identified.

Aim

To summarize previously identified OCT biomarkers in dementia and to assess their suitability for comprehensive screening examinations.

Material and methods

A literature search was conducted on PubMed until March 2023 for the keywords “dementia”, “mild cognitive impairment”, “OCT”, “OCT angiography” and “retinal biomarkers”. Relevant publications were identified and summarized.

Results

Numerous unspecific alterations on OCT imaging and OCT‑A were identified in patients with (predementia) dementia according to many population and clinical studies. These include a reduced thickness of the peripapillary retinal nerve fiber layer, the ganglion cell complex and the central retinal region. Additionally, a reduced vascular density and an enlarged foveal avascular zone (FAZ) were identified on OCT‑A imaging.

Conclusion

The currently known OCT biomarkers are too unspecific, and there is to date no OCT or OCT-A-based signature distinguishing between different types of dementia. Further longitudinal studies with larger sample sizes are warranted to develop and evaluate such distinct OCT signatures for different types of dementia and their respective early disease stages and to assess their prognostic value. Only then is the inclusion in comprehensive screening investigations feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Breteler M, Wolf H (2014) The Rhineland study: a novel platform for epidemiologic research into Alzheimer disease and related disorders. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2014.05.810

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bulut M, Kurtuluş F, Gözkaya O et al (2018) Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 102:233–237. https://doi.org/10.1136/bjophthalmol-2017-310476

    Article  PubMed  Google Scholar 

  3. Chan VTT, Sun Z, Tang S et al (2019) Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology 126:497–510. https://doi.org/10.1016/j.ophtha.2018.08.009

    Article  PubMed  Google Scholar 

  4. Cheung CYL, Ong YT, Hilal S et al (2015) Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and alzheimer’s disease. J Alzheimers Dis 45:45–56. https://doi.org/10.3233/JAD-141659

    Article  CAS  PubMed  Google Scholar 

  5. Citront M, Ohersdorf T, Haass C et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:1991–1993

    Google Scholar 

  6. Dumitrascu OM, Okazaki EM, Cobb SH et al (2018) Amyloid-beta-related Angiitis with distinctive neuro-ophthalmologic features. Neuroophthalmology 42:237–241. https://doi.org/10.1080/01658107.2017.1374982

    Article  PubMed  Google Scholar 

  7. Ferrari L, Huang SC, Magnani G et al (2017) Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 56:1101–1107. https://doi.org/10.3233/JAD-160886

    Article  CAS  PubMed  Google Scholar 

  8. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Alzheimer’s disease international. Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao SS, Jia Y, Zhang M et al (2016) Optical coherence tomography angiography. Investig Ophthalmol Vis Sci 57:27–36. https://doi.org/10.1167/iovs.15-19043

    Article  Google Scholar 

  10. Garzone D, Finger RP, Mauschitz MM et al (2022) Neurofilament light chain and retinal layers’ determinants and association: a population-based study. Ann Clin Transl Neurol 9:564–569. https://doi.org/10.1002/acn3.51522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garzone D, Finger RP, Mauschitz MM et al (2023) Visual impairment and retinal and brain neurodegeneration: a population-based study. Hum Brain Mapp. https://doi.org/10.1002/hbm.26237

    Article  PubMed  PubMed Central  Google Scholar 

  12. Geerling CF, Terheyden JH, Langner SM et al (2022) Changes of the retinal and choroidal vasculature in cerebral small vessel disease. Sci Rep 12:1–8. https://doi.org/10.1038/s41598-022-07638-x

    Article  CAS  Google Scholar 

  13. Gharbiya M, Trebbastoni A, Parisi F et al (2014) Choroidal thinning as a new finding in Alzheimer’s disease: evidence from enhanced depth imaging spectral domain optical coherence tomography. J Alzheimers Dis 40:907–917. https://doi.org/10.3233/JAD-132039

    Article  PubMed  Google Scholar 

  14. den Haan J, van de Kreeke JA, Konijnenberg E et al (2019) Retinal thickness as a potential biomarker in patients with amyloid-proven early- and late-onset Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit 11:463–471. https://doi.org/10.1016/j.dadm.2019.05.002

    Article  Google Scholar 

  15. Hornberger J, Bae J, Watson I et al (2017) Clinical and cost implications of amyloid beta detection with amyloid beta positron emission tomography imaging in early Alzheimer’s disease—the case of florbetapir. Curr Med Res Opin 33:675–685. https://doi.org/10.1080/03007995.2016.1277197

    Article  CAS  PubMed  Google Scholar 

  16. James BD, Wilson RS, Boyle PA et al (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993. https://doi.org/10.1093/brain/aww224

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jonas JB, Wang YX, Bin Wei W et al (2016) Cognitive function and subfoveal choroidal thickness: the Beijing eye study. Ophthalmology 123:220–222. https://doi.org/10.1016/j.ophtha.2015.06.020

    Article  PubMed  Google Scholar 

  18. Kashani AH, Chen CL, Gahm JK et al (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100. https://doi.org/10.1016/j.preteyeres.2017.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim BJ, Grossman M, Song D et al (2019) Persistent and progressive outer retina thinning in frontotemporal degeneration. Front Neurosci 13:1–13. https://doi.org/10.3389/fnins.2019.00298

    Article  Google Scholar 

  20. Kim BJ, Irwin DJ, Song D et al (2017) Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology 89:1604–1611. https://doi.org/10.1212/WNL.0000000000004500

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kirbas S, Turkyilmaz K, Anlar O et al (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuro-ophthalmology 33:58–61. https://doi.org/10.1097/WNO.0b013e318267fd5f

    Article  Google Scholar 

  22. Ko F, Muthy ZA, Gallacher J et al (2018) Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol 75:1198–1205. https://doi.org/10.1001/jamaneurol.2018.1578

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van De Kreeke JA, Nguyen HT, Konijnenberg E et al (2019) Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-314127

    Article  PubMed  Google Scholar 

  24. Langner SM, Terheyden JH, Geerling CF et al (2022) Structural retinal changes in cerebral small vessel disease. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-13312-z

    Article  CAS  Google Scholar 

  25. Lee A, Rudkin A, Agzarian M et al (2009) Retinal vascular abnormalities in patients with cerebral amyloid angiopathy. Cerebrovasc Dis 28:618–622. https://doi.org/10.1159/000251173

    Article  PubMed  Google Scholar 

  26. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol 9:44–53. https://doi.org/10.1038/nrneurol.2012.227

    Article  CAS  PubMed  Google Scholar 

  27. Mauschitz MM, Bonnemaijer PWM, Diers K et al (2018) Systemic and ocular determinants of peripapillary retinal nerve fiber layer thickness measurements in the European eye epidemiology (E3) population. Ophthalmology 125:1526–1536. https://doi.org/10.1016/j.ophtha.2018.03.026

    Article  PubMed  Google Scholar 

  28. Mauschitz MM, Holz FG, Finger RP, Breteler MMB (2019) Determinants of macular layers and optic disc characteristics on SD-OCT: The rhineland study. Transl Vis Sci Technol. https://doi.org/10.1167/tvst.8.3.34

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mauschitz MM, Lohner V, Koch A et al (2022) Retinal layer assessments as potential biomarkers for brain atrophy in the Rhineland Study. Sci Rep 12:1–7. https://doi.org/10.1038/s41598-022-06821-4

    Article  CAS  Google Scholar 

  30. McCann H, Stevens CH, Cartwright H, Halliday GM (2014) α‑Synucleinopathy phenotypes. Park Relat Disord 20:S62–S67. https://doi.org/10.1016/S1353-8020(13)70017-8

    Article  Google Scholar 

  31. La Morgia C, Ross-Cisneros FN, Koronyo Y et al (2016) Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 79:90–109. https://doi.org/10.1002/ana.24548

    Article  CAS  PubMed  Google Scholar 

  32. Mutlu U, Colijn JM, Ikram MA et al (2018) Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol 75:1256–1263. https://doi.org/10.1001/jamaneurol.2018.1563

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Brien JT, Thomas A (2015) Vascular dementia. Lancet 386:1698–1706. https://doi.org/10.1016/S0140-6736(15)00463-8

    Article  PubMed  Google Scholar 

  34. O’Bryhim BE, Apte RS, Kung N et al (2018) Association of Preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol 136:1242–1248. https://doi.org/10.1001/jamaophthalmol.2018.3556

    Article  PubMed  PubMed Central  Google Scholar 

  35. Petersen R, Smith G, Waring S et al (1999) Mild cognitive impairment clinical characterization and outcome Ronald. JAMA Neurol 56:303–309

    CAS  Google Scholar 

  36. Podoleanu AG (2005) Optical coherence tomography. Br J Radiol 78:976–988. https://doi.org/10.1259/bjr/55735832

    Article  PubMed  Google Scholar 

  37. Prince MJ, Wu F, Guo Y et al (2015) The burden of disease in older people and implications for health policy and practice. Lancet 1(4):61347–61347. https://doi.org/10.1016/S0140-6736

    Article  Google Scholar 

  38. Prusiner SB (2013) Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 47:601–623. https://doi.org/10.1146/annurev-genet-110711-155524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS et al (2018) Artificial intelligence in retina. Prog Retin Eye Res 67:1–29. https://doi.org/10.1016/j.preteyeres.2018.07.004

    Article  PubMed  Google Scholar 

  40. Shi H, Koronyo Y, Rentsendorj A et al (2020) Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathol 139:813–836. https://doi.org/10.1007/s00401-020-02134-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sweeney MD, Montagne A, Sagare AP et al (2019) Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimers Dement 15:158–167. https://doi.org/10.1016/j.jalz.2018.07.222

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tang MY, Blazes MS, Lee CS (2022) Imaging amyloid and Tau in the retina: current research and future. Dir J Neuro-ophthalmology

  43. Toledo JB, Arnold SE, Raible K et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136:2697–2706. https://doi.org/10.1093/brain/awt188

    Article  PubMed  PubMed Central  Google Scholar 

  44. Trebbastoni A, Marcelli M, Mallone F et al (2017) Attenuation of choroidal thickness in patients with Alzheimer disease: evidence from an Italian prospective study. Alzheimer Dis Assoc Disord 31:128–134. https://doi.org/10.1097/WAD.0000000000000176

    Article  PubMed  Google Scholar 

  45. Trick GL, Trick LR, Morris P, Wolf M (1995) Visual field loss in senile dementia of the alzheimer’s type. Neurology 45:68–74. https://doi.org/10.1212/WNL.45.1.68

    Article  CAS  PubMed  Google Scholar 

  46. Tsai Y, Lu B, Ljubimov AV et al (2014) Ocular changes in TGF344-AD rat model of Alzheimer’s disease. Investig Ophthalmol Vis Sci 55:523–534. https://doi.org/10.1167/iovs.13-12888

    Article  CAS  Google Scholar 

  47. Turski CA, Turski GN, Faber J et al (2022) Microvascular breakdown due to retinal neurodegeneration in Ataxias. Mov Disord 37:162–170. https://doi.org/10.1002/mds.28791

    Article  CAS  PubMed  Google Scholar 

  48. Wintergerst MWM, Falahat P, Holz FG et al (2021) Retinal and choriocapillaris perfusion are associated with ankle-brachial-pressure-index and Fontaine stage in peripheral arterial disease. Sci Rep 11:1–7. https://doi.org/10.1038/s41598-021-90900-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Goerdt.

Ethics declarations

Interessenkonflikt

L. Goerdt, F.G. Holz und R.P. Finger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerdt, L., Holz, F.G. & Finger, R.P. Retinale optische Kohärenztomographie-Biomarker bei demenziellen Erkrankungen. Ophthalmologie 121, 84–92 (2024). https://doi.org/10.1007/s00347-023-01947-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-023-01947-w

Schlüsselwörter

Keywords

Navigation