Skip to main content
Log in

Vitreoretinale Chirurgie bei altersabhängiger Makuladegeneration

Vitreoretinal surgery in age-related macular degeneration

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Die Glaskörperstruktur, die Interaktion des Glaskörpers mit der Netzhautoberfläche und traktive Veränderungen des vitreoretinalen Interface spielen bei der altersabhängigen Makuladegeneration und ihrer Entwicklung eine kritische Rolle. Aus der Literatur kann man schlussfolgern, dass ein abgehobener bzw. entfernter Glaskörper ein potenzieller Schutzfaktor vor einer feuchten altersabhängigen Makuladegeneration sein kann. Umgekehrt konnte gezeigt werden, dass vitreomakuläre Adhärenzen die Bildung einer neovaskulären altersabhängigen Makuladegeneration fördern und Einfluss auf die Effektivität und Frequenz einer intravitrealen Pharmakotherapie mit VEGF-Hemmern nehmen. Vor diesem Hintergrund kann die Pars-plana-Vitrektomie ggf. mit Chirurgie im Bereich des vitreoretinalen Interface als Therapieergänzung in ausgesuchten Einzelfällen betrachtet werden. Die Präparation epimakulärer Membranen und der inneren Grenzmembran kann einen Beitrag zur Stabilisierung der Sehschärfe leisten und ggf. die Injektionsfrequenz von VEGF-Hemmern in den Glaskörperraum reduzieren. Chirurgische Eingriffe bei altersabhängiger Makuladegeneration kommen heute besonders bei der Behandlung der submakulären Blutung mit fovealer Beteiligung zum Einsatz. Das Vorgehen ist nicht standardisiert und zielt darauf ab, die Blutung durch intravitreal oder subretinal eingegebenes rTPA zu verflüssigen und pneumatisch durch intravitreal appliziertes Gas zu verdrängen, ggf. kombiniert mit einem VEGF-Hemmer. Wichtig ist eine Fortführung der Behandlung durch eine Anti-VEGF-Therapie. Andere submakuläre chirurgische Verfahren wie die subfoveale CNV-Extraktion oder die Verschiebung der Fovea über intaktes RPE durch eine Translokation der Makula sind im Zeitalter der intravitrealen VEGF-Inhibition in den Hintergrund getreten. Submakuläre bzw. subretinale Chirurgie spielte ferner eine wichtige Rolle bei der Transplantation von RPE im Makulabereich, die heute besonderen Ausnahmesituationen vorbehalten bleibt. Letztlich aber waren diese submakulären chirurgischen Therapiekonzepte Wegbereiter für neue Ansätze in der Behandlung der trockenen und neovaskulären AMD wie die submakuläre oder intravitreale Gen- oder Stammzelltherapie.

Abstract

The structure of the vitreous body, its interaction with the retinal surface and tractive alterations of the vitreoretinal interface may play a role in the pathogenesis and the development of age-related macular degeneration (AMD). From clinical trials it can be concluded that posterior vitreous detachment (PVD) or vitreous removal may protect against the development of neovascular AMD. Vitreomacular adhesions may promote neovascular AMD and may have an impact on the efficacy and frequency of intravitreal vascular endothelial growth factor (VEGF) inhibition. Therefore, vitreomacular surgery may be considered as a treatment option in selected cases. Peeling of epimacular membranes and the internal limiting membrane (ILM) may contribute to stabilizing visual acuity and reducing the treatment burden of current intravitreal pharmacotherapy. At present, surgical interventions in AMD are mainly performed in cases of submacular hemorrhage involving the fovea. The treatment is not standardized and consists of liquefaction of the blood using recombinant tissue plasminogen activator (rTPA) and its pneumatic displacement, potentially combined with VEGF inhibition. Other submacular surgical strategies, such as choroidal neovascularization (CNV) extraction, macular translocation or transplantation of retinal pigment epithelium (RPE) are currently limited to selected cases as a salvage treatment; however, the development of these submacular surgical interventions has formed the basis for new approaches in the treatment of dry and neovascular AMD including submacular or intravitreal gene and stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aisenbrey S, Bartz-Schmidt KU, Walter P, Hilgers RD, Ayertey H, Szurman P, Thumann G (2007) Long-term follow-up of macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 125(10):1367–1372

    Article  PubMed  Google Scholar 

  2. Avery RL, Fekrat S, Hawkins BS, Bressler NM (1996) Natural history of subfoveal hemorrhage in age-related macular degeneration. Retina 16:183–189

    Article  CAS  PubMed  Google Scholar 

  3. Azuma K, Shiraya T, Araki F, Kato S, Yashiro S, Nagahara M, Ueta T (2021) Surgical treatment for a full-thickness macular hole that developed on a large drusenoid pigment epithelial detachment. Cureus 13(6):e15785

    PubMed  PubMed Central  Google Scholar 

  4. Benner JD, Hay A, Landers MB 3rd, Hjelmeland LM, Morse LS (1994) Fibrinolytic-assisted removal of experimental subretinal hemorrhage within seven days reduces outer retinal degeneration. Ophthalmology 101(4):672–681

    Article  CAS  PubMed  Google Scholar 

  5. Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554

    Article  PubMed  Google Scholar 

  6. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, Kellner L, Stanzel BV, Jahn C, Feichtinger H (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45(11):4151–4160

    Article  PubMed  Google Scholar 

  7. Butros S, Cucera A, Lang GE (2011) Photocoagulation of age-related juxtapapillary choroidal neovascularisation. Klin Monbl Augenheilkd 228(11):999–1002

    Article  CAS  PubMed  Google Scholar 

  8. Cibis PA, Yamashita T (1959) Experimental aspects of ocular siderosis and hemosiderosis. Am J Ophthalmol 48(5):465–480

    Article  Google Scholar 

  9. de Juan E Jr, Machemer R (1988) Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol 105(1):25–29

    Article  PubMed  Google Scholar 

  10. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W, Graf A, Binder S (2011) Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95(3):370–375

    Article  PubMed  Google Scholar 

  11. Flood MT, Gouras P, Kjeldbye H (1980) Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 19(11):1309–1320

    CAS  PubMed  Google Scholar 

  12. Gabrielle PH, Delyfer MN, Glacet-Bernard A, Conart JB, Uzzan J, Kodjikian L, Arndt C, Tadayoni R, Soudry-Faure A, Creuzot Garcher CP (2023) Surgery, tissue plasminogen activator, antiangiogenic agents, and age-related macular degeneration study: a randomized controlled trial for submacular hemorrhage secondary to age-related macular degeneration. Ophthalmology. https://doi.org/10.1016/j.ophtha.2023.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glatt H, Machemer R (1982) Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol 94:762–773

    Article  CAS  PubMed  Google Scholar 

  14. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V (2019) Gene therapy leaves a vicious cycle. Front Oncol 9:297

    Article  PubMed  PubMed Central  Google Scholar 

  15. He X, Cao W, Wang Z, Zhang N, Xu K, Yu L, Xing Y, Yang N (2023) Efficacy evaluation of tissue plasminogen activator with anti-vascular endothelial growth factor drugs for submacular hemorrhage treatment: a meta-analysis. J Clin Med 12(3):1035. https://doi.org/10.3390/jcm12031035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heier JS, Ho AC, Samuel MA, Chang T, Riemann CD, Kitchens JW, Slakter JS, Leiderman YI, Spencer R, Williams GA, Hickson-Curran SB, Keane M, Baldassarre JS, Prelude Study Group (2020) Safety and efficacy of subretinally administered palucorcel for geographic atrophy of age-related macular degeneration: phase 2b study. Ophthalmol Retina 4(4):384–393

    Article  PubMed  Google Scholar 

  17. Hillenkamp J, Surguch V, Framme C, Gabel VP, Sachs HG (2010) Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol 248(1):5–11

    Article  CAS  PubMed  Google Scholar 

  18. Hussain RM, Shaukat BA, Ciulla LM, Berrocal AM, Sridhar J (2021) Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Des Devel Ther 15:2653–2665

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iglicki M, Khoury M, Melamud JI, Donato L, Barak A, Quispe DJ, Zur D, Loewenstein A (2023) Naïve subretinal haemorrhage due to neovascular age-related macular degeneration. Pneumatic displacement, subretinal air, and tissue plasminogen activator: subretinal vs intravitreal aflibercept-the native study. Eye (Lond) 37(8):1659–1664

    Article  CAS  PubMed  Google Scholar 

  20. Inoue N, Kato A, Araki T, Kimura T, Kinoshita T, Okamoto F, Murakami T, Mitamura Y, Sakamoto T, Miki A, Takamura Y, Matsubara H, Tsujinaka H, Gomi F, Yasukawa T (2022) Visual prognosis of submacular hemorrhage secondary to age-related macular degeneration: a retrospective multicenter survey. PLoS ONE 17(7):e271447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kashani AH (2022) Stem cell-derived retinal pigment epithelium transplantation in age-related macular degeneration: recent advances and challenges. Curr Opin Ophthalmol 33(3):211–221

    Article  PubMed  Google Scholar 

  22. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, Chan C, Palejwala N, Ingram A, Dang W, Lin CM, Mitra D, Pennington BO, Hinman C, Faynus MA, Bailey JK, Mohan S, Rao N, Johnson LV, Clegg DO, Hinton DR, Humayun MS (2021) One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell Bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol 10(10):13

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol 144(5):741–746

    Article  PubMed  Google Scholar 

  24. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F, Goluboff E (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 30(3):586–588

    CAS  PubMed  Google Scholar 

  25. Mayer WJ, Hakim I, Haritoglou C, Gandorfer A, Ulbig M, Kampik A, Wolf A (2013) Efficacy and safety of recombinant tissue plasminogen activator and gas versus bevacizumab and gas for subretinal haemorrhage. Acta Ophthalmol 91(3):274–278

    Article  CAS  PubMed  Google Scholar 

  26. Mayr-Sponer U, Waldstein SM, Kundi M, Ritter M, Golbaz I, Heiling U, Papp A, Simader C, Schmidt-Erfurth U (2013) Influence of the vitreomacular interface on outcomes of ranibizumab therapy in neovascular age-related macular degeneration. Ophthalmology 120(12):2620–2629

    Article  PubMed  Google Scholar 

  27. Meyer CH, Scholl HP, Eter N, Helb HM, Holz FG (2008) Combined treatment of acute subretinal hemorrhages with intravitreal recombined tissue plasminogen activator, expansile gas and bevacizumab: a retrospective pilot study. Acta Ophthalmol 86:490–494

    Article  CAS  PubMed  Google Scholar 

  28. Müller S, Ehrt O, Gündisch O, Eckl-Titz G, Scheider A (2000) Functional results after surgical extraction or photocoagulation of choroid neovascularization (CNV) in age-related macular degeneration. Ophthalmologe 97(2):142–146

    PubMed  Google Scholar 

  29. Muftuoglu IK, Lin T, Bartsch DU, Freeman WR (2021) Influence of vitrectomy on the progression of dry age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 259(4):847–853

    Article  PubMed  Google Scholar 

  30. Ohji M, Fujikado T, Kusaka S, Hayashi A, Hosohata J, Ikuno Y, Sawa M, Kubota A, Hashida N, Tano Y (2001) Comparison of three techniques of foveal translocation in patients with subfoveal choroidal neovascularization resulting from age-related macular degeneration. Am J Ophthalmol 132(6):888–896

    Article  CAS  PubMed  Google Scholar 

  31. Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J (2014) Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci 56(1):81–89

    Article  PubMed  Google Scholar 

  32. Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson NC Jr, Desai U (1991) A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 22(2):102–108

    CAS  PubMed  Google Scholar 

  33. Robison CD, Krebs I, Binder S, Barbazetto IA, Kotsolis AI, Yannuzzi LA, Sadun AA, Sebag J (2009) Vitreomacular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol 148(1):79–82

    Article  PubMed  Google Scholar 

  34. Rohowetz LJ, Koulen P (2023) Stem cell-derived retinal pigment epithelium cell therapy: past and future directions. Front Cell Dev Biol 11:1098406

    Article  PubMed  PubMed Central  Google Scholar 

  35. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scupola A, Coscas G, Soubrane G, Balestrazzi E (1999) Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica 213:97–102

    Article  CAS  PubMed  Google Scholar 

  37. Thomas MA, Grand MG, Williams DF, Lee CM, Pesin SR, Lowe MA (1992) Surgical management of subfoveal choroidal neovascularization. Ophthalmology 99(6):952–968

    Article  CAS  PubMed  Google Scholar 

  38. Toth CA, Morse LS, Hjelmeland LM, Landers MB 3rd (1991) Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol 109:723–729

    Article  CAS  PubMed  Google Scholar 

  39. Treumer F, Roider J, Hillenkamp J (2012) Long-term outcome of subretinal coapplication of rtPA and bevacizumab followed by repeated intravitreal anti-VEGF injections for neovascular AMD with submacular haemorrhage. Br J Ophthalmol 96(5):708–713

    Article  PubMed  Google Scholar 

  40. Treumer F, Wienand S, Purtskhvanidze K, Roider J, Hillenkamp J (2017) The role of pigment epithelial detachment in AMD with submacular hemorrhage treated with vitrectomy and subretinal co-application of rtPA and anti-VEGF. Graefes Arch Clin Exp Ophthalmol 255(6):1115–1123

    Article  CAS  PubMed  Google Scholar 

  41. Waldstein SM, Coulibaly L, Riedl S, Sadeghipour A, Gerendas BS, Schmidt-Erfurth UM (2020) Effect of posterior vitreous detachment on treat-and-extend versus monthly ranibizumab for neovascular age-related macular degeneration. Br J Ophthalmol 104(7):899–903

    Article  PubMed  Google Scholar 

  42. Weber C, Bertelsmann M, Kiy Z, Stasik I, Holz FG, Liegl R (2023) Antiplatelet and anticoagulant therapy in patients with submacular hemorrhage caused by neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 261(5):1413–1421

    Article  CAS  PubMed  Google Scholar 

  43. Ziada J, Hagenau F, Compera D, Wolf A, Scheler R, Schaumberger MM, Priglinger SG, Schumann RG (2018) Vitrectomy for intermediate age-related macular degeneration associated with tangential vitreomacular traction: a clinicopathologic correlation. Retina 38(3):531–540

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Haritoglou.

Ethics declarations

Interessenkonflikt

C. Haritoglou erhält Vortragshonorare von Bayer und Novartis. S. Boneva. M. Schultheiss, J. Sebag und S. Binder geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patient/-innen zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern/Vertreterinnen eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haritoglou, C., Boneva, S., Schultheiss, M. et al. Vitreoretinale Chirurgie bei altersabhängiger Makuladegeneration. Ophthalmologie 120, 1004–1013 (2023). https://doi.org/10.1007/s00347-023-01933-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-023-01933-2

Schlüsselwörter

Keywords

Navigation