Skip to main content
Log in

Spätfolgen der Frühgeborenenretinopathie im Kindesalter

Late sequelae of retinopathy of prematurity in infancy

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Frühgeborenenretinopathie („retinopathy of prematurity“ [ROP]) ist eine der häufigsten Ursachen für eine hochgradige Sehbehinderung oder Blindheit im Kindesalter und kann selbst nach Abheilung der initialen Erkrankung noch zu schwerwiegenden Spätfolgen bei Kindern führen.

Fragestellung

Die vorliegende Arbeit fasst mögliche Spätfolgen im Kindesalter nach behandelter oder unbehandelter ROP zusammen. Ein Fokus liegt dabei auf der Myopieentwicklung, auf Netzhautablösungen und der neurologischen und pulmonalen Entwicklung nach Anti-VEGF(„vascular endothelial growth factor“)-Therapie.

Material und Methoden

Die Arbeit basiert auf einer selektiven Literaturrecherche zu Spätfolgen im Kindesalter einer behandelten oder unbehandelten ROP.

Ergebnisse

Frühgeborene haben ein erhöhtes Risiko für die Entwicklung einer hochgradigen Myopie. Interessanterweise legen mittlerweile mehrere Studien nahe, dass sich dieses Risiko nach einer Anti-VEGF-Behandlung verringert. Dafür hat eine Anti-VEGF-Therapie den Nachteil, dass nach anfänglich erfolgreicher Behandlung Spätrezidive auch noch nach mehreren Monaten möglich sind, die langfristige und hochfrequente Nachuntersuchungen unerlässlich machen. Kontrovers diskutiert werden mögliche negative Auswirkungen einer Anti-VEGF-Therapie auf die neurologische und pulmonale Entwicklung. Sowohl nach behandelter als auch nach unbehandelter ROP sind rhegmatogene oder traktive Netzhautablösungen, Glaskörperblutungen, hohe Myopie und Strabismus mögliche Spätfolgen.

Diskussion

Kinder mit einer Vorgeschichte von ROP mit oder ohne Behandlung haben ein erhöhtes Risiko für späte okuläre Folgeerkrankungen, darunter hohe Myopie, Netzhautablösungen und Glaskörperblutungen sowie Strabismus. Ein nahtloser Übergang von ROP-Screening zu pädiatrischer und ophthalmologischer Weiterbetreuung ist daher unerlässlich, um mögliche Refraktionsfehler, Strabismus oder andere amblyogene Veränderungen frühzeitig feststellen und behandeln zu können.

Abstract

Background

Retinopathy of prematurity (ROP) is one of the most frequent causes of severe visual impairment or blindness in childhood and can lead to severe late complications in children even after the initial disease has resolved.

Purpose

The present study summarizes possible late effects in childhood after treated and untreated ROP. A special focus is on the development of myopia, retinal detachment, as well as neurological and pulmonary development after anti-vascular endothelial growth factor (VEGF) treatment.

Material and methods

This work is based on a selective literature search on late effects in childhood of treated or untreated ROP.

Results

Preterm infants have an increased risk of developing high-grade myopia. Interestingly, several studies indicate that the risk of myopia is reduced following anti-VEGF treatment. With anti-VEGF treatment, however, late recurrences after initial response are possible even after several months, making long-term and frequent follow-up examinations essential. Controversy exists regarding the possible negative effects of anti-VEGF treatment on neurological and pulmonary development. After both treated and untreated ROP, rhegmatogenous, tractional or exudative retinal detachment, vitreous hemorrhage, high myopia and strabismus are possible late complications.

Discussion

Children with a history of ROP with or without treatment have an increased risk for late ocular sequelae, such as high myopia, retinal detachment, vitreous hemorrhage and strabismus. A seamless transition from ROP screening to pediatric and ophthalmological follow-up care is therefore essential for timely detection and treatment of possible refractive errors, strabismus, or other amblyogenic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Al-Taie R, Simkin SK, Douçet E et al (2019) Persistent avascular retina in infants with a history of type 2 retinopathy of prematurity: to treat or not to treat? J Pediatr Ophthalmol Strabism 56:222–228

    Article  Google Scholar 

  2. Alharkan DH, Kahtani ES, Gikandi PW et al (2014) Vitreous hemorrhage in pediatric age group. J Ophthalmol 201(4)

  3. Bowl W, Lorenz B, Jäger M et al (2013) Improving detection of mild loss of retinal light increment sensitivity at the posterior pole with the microperimeter MP1. Investig Ophthalmol Vis Sci 54:4666–4674

    Article  Google Scholar 

  4. Bowl W, Raoof S, Lorenz B et al (2019) Cone-mediated function correlates to altered foveal morphology in preterm-born children at school age. Investig Ophthalmol Vis Sci 60:1614–1620

    Article  CAS  Google Scholar 

  5. Bowl W, Stieger K, Bokun M et al (2016) OCT-based macular structure-function correlation in dependence on birth weight and gestational age—the Giessen Long-Term ROP Study. Investig Ophthalmol Vis Sci 57:OCT235–OCT241

    Google Scholar 

  6. Bremer DL, Palmer EA, Fellows RR et al (1998) Strabismus in premature infants in the first year of life. Arch Ophthalmol 116:329–333

    Article  CAS  PubMed  Google Scholar 

  7. Bremer DL, Rogers DL, Good WV et al (2012) Glaucoma in the Early Treatment for Retinopathy of Prematurity (ETROP) study. J Am Assoc Pediatr Ophthalmol Strabism 16:449–452

    Article  Google Scholar 

  8. Brown MM, Brown GC, Duker JS et al (1994) Exudative retinopathy of adults: a late sequela of retinopathy of prematurity. Int Ophthalmol 18:281–285

    Article  PubMed  Google Scholar 

  9. Chang Y‑S, Chen Y‑T, Lai T‑T et al (2019) Involution of retinopathy of prematurity and neurodevelopmental outcomes after intravitreal bevacizumab treatment. PLoS One 14:e223972

    Article  Google Scholar 

  10. Chen TC, Tsai TH, Shih YF et al (2010) Long-term evaluation of refractive status and optical components in eyes of children born prematurely. Investig Ophthalmol Vis Sci 51:6140–6148

    Article  Google Scholar 

  11. Chiang MF, Quinn GE, Fielder AR et al (2021) International classification of retinopathy of prematurity. Ophthalmology 128:e51–e68

    Article  PubMed  Google Scholar 

  12. Fidler M, Fleck BW, Stahl A et al (2020) Ranibizumab population pharmacokinetics and free VEGF pharmacodynamics in preterm infants with retinopathy of prematurity in the RAINBOW trial. Trans Vis Sci Technol 9:43–43

    Article  Google Scholar 

  13. Fieß A, Kölb-Keerl R, Schuster AK et al (2017) Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 Years of age. BMC Ophthalmol 17:1–9

    Article  Google Scholar 

  14. Fieß A (2023) Frühgeburtlichkeit und deren okuläre Auswirkungen. Ophthalmologie. https://doi.org/10.1007/s00347-023-01873-x

    Article  Google Scholar 

  15. Fledelius HC, Fledelius CJIO, Science V (2012) Eye size in threshold retinopathy of prematurity, based on a Danish preterm infant series: early axial eye growth, pre-and postnatal aspects. Inv Ophthalmol Vis Sci 53:4177–4184

    Google Scholar 

  16. Geloneck MM, Chuang AZ, Clark WL et al (2014) Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol 132:1327–1333

    Article  PubMed  Google Scholar 

  17. Gerber H‑P, Hillan KJ, Ryan AM et al (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert C, Foster AJBOTWHO (2001) Childhood blindness in the context of VISION 2020: the right to sight. Bull WHO 79:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Greven CM, Tasman WJa O (1989) Rhegmatogenous retinal detachment following cryotherapy in retinopathy of prematurity. Arch Ophthalmol 107:1017–1018

    Article  CAS  PubMed  Google Scholar 

  20. Hamad AE, Moinuddin O, Blair MP et al (2020) Late-onset retinal findings and complications in untreated retinopathy of prematurity. Ophthalmol Retina 4:602–612

    PubMed  Google Scholar 

  21. Hittner HM, Rhodes LM, Mcpherson A (1979) Anterior segment abnormalities in cicatricial retinopathy of prematurity. Ophthalmology 86:803–816

    Article  CAS  PubMed  Google Scholar 

  22. Hoerster R, Muether P, Dahlke C et al (2012) Serum concentrations of vascular endothelial growth factor in an infant treated with ranibizumab for retinopathy of prematurity. Acta Ophthalmol 91:e74–e75

    Article  PubMed  Google Scholar 

  23. Hong EH, Shin YU, Bae GH et al (2022) Ophthalmic complications in retinopathy of prematurity in the first decade of life in Korea using the national health insurance database. Sci Rep 12:1–8

    Google Scholar 

  24. Huang C‑Y, Lai S‑H, Tseng H‑J et al (2022) Pulmonary function in school-age children following intravitreal injection of bevacizumab for retinopathy of prematurity. Sci Rep 12:18788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang C‑Y, Lien R, Wang N‑K et al (2018) Changes in systemic vascular endothelial growth factor levels after intravitreal injection of aflibercept in infants with retinopathy of prematurity. Graefe’s Arch Clin Exp Ophthalmol 256:479–487

    CAS  Google Scholar 

  26. Kennedy KA, Mintz-Hittner HA, and BEAT-ROP Cooperative Group (2018) Medical and developmental outcomes of bevacizumab versus laser for retinopathy of prematurity. J Am Assoc Pediatr Ophthalmol Strabism 22:61–65.e1

    Article  Google Scholar 

  27. Maier RF, Hummler H, Kellner U et al (2021) Guidelines for ophthalmological screening of premature infants in Germany (S2k level, AWMF guidelines register no. 024/010, March 2020) Joint recommendation of the German Ophthalmological Society (DOG), Retinological Society (RG), Professional Association of Ophthalmologists in Germany e. V.(BVA), German Society of Paediatrics and Adolescent Medicine (DGKJ), Professional Association of Pediatricians (BVKJ), Federal Association “The Premature Child”, Society for Neonatology and Paediatric Intensive Care Medicine (GNPI). 118:117–131

    Google Scholar 

  28. Marlow N, Stahl A, Lepore D et al (2021) 2‑year outcomes of ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW extension study): prospective follow-up of an open label, randomised controlled trial. Lancet Child Adolesc Health 5:698–707

    CAS  Google Scholar 

  29. Martínez-Castellanos MA, Schwartz S, Hernández-Rojas ML et al (2013) Long-term effect of antiangiogenic therapy for retinopathy of prematurity up to 5 years of follow-up. Retina 33:329–338

    Article  PubMed  Google Scholar 

  30. Mintz-Hittner HA, Kennedy KA, Chuang AZ, BEAT-ROP Cooperative Group (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. New Engl J Med 364:603–615

    Article  CAS  PubMed  Google Scholar 

  31. Mintz-Hittner HA, Knight-Nanan DM, Satriano DR et al (1999) A small foveal avascular zone may be an historic mark of prematurity. Ophthalmology 106:1409–1413

    Article  CAS  PubMed  Google Scholar 

  32. Molloy CS, Anderson PJ, Anderson VA et al (2016) The long-term outcome of extremely preterm (〈 28 weeks’ gestational age) infants with and without severe retinopathy of prematurity. J Neuropsychol 10:276–294

    Article  PubMed  Google Scholar 

  33. Morin J, Luu TM, Superstein R et al (2016) Neurodevelopmental outcomes following bevacizumab injections for retinopathy of prematurity. Pediatrics 137(4)

  34. Natarajan G, Shankaran S, Nolen TL et al (2019) Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics 144(2)

  35. O’Keeffe N, Murphy J, O’Keeffe M et al (2016) Bevacizumab compared with diode laser in stage 3 posterior retinopathy of prematurity: a 5 year follow-up. Irish Med J 109(2):355-355

    Google Scholar 

  36. Cryotherapy for Retinopathy of Prematurity Cooperative Group (2001) Multicenter trial of cryotherapy for retinopathy of prematurity: ophthalmological outcomes at 10 years. Arch Ophthalmol 119:1110–1118

    Article  Google Scholar 

  37. Ozdemir HB, Ozdek S (2022) Late sequelae of retinopathy of prematurity in adolescence and adulthood. Saudi J Ophthalmology 36:270

    Google Scholar 

  38. Park KH, Hwang J‑M, Choi MY et al (2004) Retinal detachment of regressed retinopathy of prematurity in children aged 2 to 15 years. Retina 24(3):368–375

    Article  PubMed  Google Scholar 

  39. Quinn GE, Dobson V, Repka MX et al (1992) Development of myopia in infants with birth weights less than 1251 g. Ophthalmology 99(3):329–340

    Article  CAS  PubMed  Google Scholar 

  40. Quinn GE, Dobson V, Siatkowski RM et al (2001) Does cryotherapy affect refractive error?: Results from treated versus control eyes in the cryotherapy for retinopathy of prematurity trial. Ophthalmology 108:343–347

    Article  CAS  PubMed  Google Scholar 

  41. Ruth A, Hutchinson AK, Hubbard G et al (2008) Late vitreous hemorrhage in patients with regressed retinopathy of prematurity. J Am Assoc Pediatr Ophthalmol Strabism 12:181–185

    Article  Google Scholar 

  42. Spirn MJ, Lynn MJ, 3rd Baker Hubbard G (2006) Vitreous hemorrhage in children. Ophthalmology 113:848–852

    Article  PubMed  Google Scholar 

  43. Stahl A, Bründer MC, Lagrèze WA et al (2022) Ranibizumab in retinopathy of prematurity–one-year follow-up of Ophthalmic Outcomes and two-year follow-up of Neurodevelopmental Outcomes from the CARE-ROP study. Acta Ophthalmol 100(1):e91–e99

    Article  CAS  PubMed  Google Scholar 

  44. Stahl A, Krohne TU, Eter N et al (2018) Comparing alternative ranibizumab dosages for safety and efficacy in retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr 172:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stewart MW (2012) The expanding role of vascular endothelial growth factor inhibitors in ophthalmology. Mayo Clin Proc. https://doi.org/10.1016/j.mayocp.2011.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sudhalkar A, Chhablani J, Jalali S et al (2013) Spontaneous vitreous hemorrhage in children. Am J Ophthalmol 156:1267–1271.e2. https://doi.org/10.1016/j.ajo.2013.05.042

    Article  PubMed  Google Scholar 

  47. Takagi M, Maruko I, Yamaguchi A et al (2019) Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity. Eye 33:1890–1896. https://doi.org/10.1038/s41433-019-0500-5

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan Q‑Q, Christiansen SP, Wang JJPO (2019) Development of refractive error in children treated for retinopathy of prematurity with anti-vascular endothelial growth factor (anti-VEGF) agents: a meta-analysis and systematic review. PLoS One 14:e225643. https://doi.org/10.1371/journal.pone.0225643

    Article  CAS  Google Scholar 

  49. Terasaki H, Hirose T (2003) Late-onset retinal detachment associated with regressed retinopathy of prematurity. Jpn J Ophthalmol 47:492–497. https://doi.org/10.1016/s0021-5155(03)00088-1

    Article  Google Scholar 

  50. Treumer F, Roider J (2020) Vitreous body hemorrhage—How long can one wait? Ophthalmologe 117:866–870. https://doi.org/10.1007/s00347-020-01112-7

    Article  PubMed  Google Scholar 

  51. Vajzovic L, Rothman AL, Tran-Viet D et al (2015) Delay in retinal photoreceptor development in very preterm compared to term infants. Invest Ophthalmol Vis Sci 56:908–913. https://doi.org/10.1167/iovs.14-16021

    Article  PubMed  PubMed Central  Google Scholar 

  52. Valikodath NG, Chiang MF, Chan RP (2021) Description and management of retinopathy of prematurity reactivation after intravitreal antivascular endothelial growth factor therapy. Curr Opin Ophthalmol 32:468–474. https://doi.org/10.1097/ICU.0000000000000786

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vanderveen DK, Bremer DL, Fellows RR et al (2011) Prevalence and course of strabismus through age 6 years in participants of the Early Treatment for Retinopathy of Prematurity randomized trial. J AAPOS 15:536–540. https://doi.org/10.1016/j.jaapos.2011.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  54. Walz J, Bemme S, Reichl S et al (2018) Behandelte Frühgeborenenretinopathie in Deutschland. Ophthalmologe 115:476–488. https://doi.org/10.1007/s00347-018-0701-5

    Article  CAS  PubMed  Google Scholar 

  55. Walz JM, Bemme S, Pielen A et al (2016) The German ROP Registry: data from 90 infants treated for retinopathy of prematurity. Acta Ophthalmol 94:e744–e752. https://doi.org/10.1111/aos.13069

    Article  PubMed  Google Scholar 

  56. Wu W‑C, Lin R‑I, Shih C‑P et al (2012) Visual acuity, optical components, and macular abnormalities in patients with a history of retinopathy of prematurity. Ophthalmology 119:1907–1916. https://doi.org/10.1016/j.ophtha.2012.02.040

    Article  PubMed  Google Scholar 

  57. Wu W‑C, Shih C‑P, Lien R et al (2017) Serum vascular endothelial growth factor after bevacizumab or ranibizumab treatment for retinopathy of prematurity. Retina 37:694–701. https://doi.org/10.1097/IAE.0000000000001209

    Article  CAS  PubMed  Google Scholar 

  58. Yang CS, Wang AG, Shih YF et al (2013) Long-term biometric optic components of diode laser-treated threshold retinopathy of prematurity at 9 years of age. Acta Ophthalmol 91:e276–e282. https://doi.org/10.1111/aos.12053

    Article  PubMed  Google Scholar 

  59. Yanni SE, Wang J, Chan M et al (2012) Foveal avascular zone and foveal pit formation after preterm birth. Br J Ophthalmol 96:961–966. https://doi.org/10.1136/bjophthalmol-2012-301612

    Article  PubMed  Google Scholar 

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeany Q. Li.

Ethics declarations

Interessenkonflikt

J.Q. Li gibt an, dass kein Interessenkonflikt besteht. J.M. Pfeil weist auf folgende Beziehungen hin: Novartis. A. Stahl weist auf folgende Beziehungen hin: Allergan, Apellis, Bayer, Novartis, Roche. T.U. Krohne weist auf folgende Beziehungen hin: Alimera Sciences, Allergan, Bayer, Heidelberg Engineering, Novartis, Roche.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.Q., Pfeil, J.M., Stahl, A. et al. Spätfolgen der Frühgeborenenretinopathie im Kindesalter. Ophthalmologie 120, 588–596 (2023). https://doi.org/10.1007/s00347-023-01876-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-023-01876-8

Schlüsselwörter

Keywords

Navigation