Skip to main content
Log in

Regenerative Medizin für das Hornhautepithel

Zelltherapie in Wissenschaft und Klinik

Regenerative medicine for the corneal epithelium

Cell therapy from bench to bedside

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Bei einer Verbrennung oder Verätzung der Augenoberfläche kann der Verlust von Limbusepithelstammzellen zu einer kompromittierten Selbsterneuerung des Hornhautepithels führen. Hierdurch kommt es zu einem dauerhaften Sehverlust. In diesen Situationen kann die Transplantation von kultivierten Limbusepithelzellen auf einer Amnionmembran oder einem Fibringel als Träger (Holoclar®, Holostem Terapie Avanzate s.r.l., Modena, Italien) zu einer Regeneration der Hornhautoberfläche beitragen. Die erforderlichen Zellen werden dem gesunden Partnerauge entnommen – sofern vorhanden. Alternative Zellquellen sind adulte Stammzellen aus anderen Körperregionen (Haarfollikel, Mundschleimhaut, mesenchymale Stromazellen) oder induzierte pluripotente Stammzellen (ursprünglich z. B. Hautfibroblasten). Das Umprogrammieren solcher Zellen kann unter Zuhilfenahme von Transkriptionsfaktoren erfolgen. Zusätzlich wird an biosynthetischen oder synthetischen Matrices gearbeitet, die nicht nur als Trägermaterial für die Transplantation dienen, sondern auch die Funktionen der Zellen (Selbsterneuerung, hornhautepitheltypischer Phänotyp) unterstützen sollen.

Abstract

In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Secker GA, Daniels JT (2008) Limbal epithelial stem cells of the cornea. http://www.ncbi.nlm.nih.gov/pubmed/20614614

  2. Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561. https://doi.org/10.1038/229560a0

    Article  CAS  PubMed  Google Scholar 

  3. Dua HS, Forrester JV (1990) The corneoscleral limbus in human corneal epithelial wound healing. Am J Ophthalmol 110:646–656. https://doi.org/10.1016/s0002-9394(14)77062-x

    Article  CAS  PubMed  Google Scholar 

  4. Auran JD, Koester CJ, Kleiman NJ et al (1995) Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology 102:33–41. https://doi.org/10.1016/s0161-6420(95)31057-3

    Article  CAS  PubMed  Google Scholar 

  5. Pellegrini G, Golisano O, Paterna P et al (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782. https://doi.org/10.1083/jcb.145.4.769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209. https://doi.org/10.1016/0092-8674(89)90958-6

    Article  CAS  PubMed  Google Scholar 

  7. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62. https://doi.org/10.1083/jcb.103.1.49

    Article  CAS  PubMed  Google Scholar 

  8. Chee KYH, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Experiment Ophthalmol 34:64–73. https://doi.org/10.1111/j.1442-9071.2006.01147.x

    Article  PubMed  Google Scholar 

  9. Ding X, Wu J, Jiang C (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637. https://doi.org/10.1016/j.lfs.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  10. Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264. https://doi.org/10.1016/j.exer.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  11. Chen Z, de Paiva CS, Luo L et al (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22:355–366. https://doi.org/10.1634/stemcells.22-3-355

    Article  PubMed  Google Scholar 

  12. Arpitha P, Prajna NV, Srinivasan M et al (2008) A subset of human limbal epithelial cells with greater nucleus-to-cytoplasm ratio expressing high levels of p63 possesses slow-cycling property. Cornea 27:1164–1170. https://doi.org/10.1097/ICO.0b013e3181814ce6

    Article  PubMed  Google Scholar 

  13. Yoshida S, Shimmura S, Kawakita T et al (2006) Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci 47:4780–4786. https://doi.org/10.1167/iovs.06-0574

    Article  PubMed  Google Scholar 

  14. Figueira EC, Di Girolamo N, Coroneo MT et al (2007) The phenotype of limbal epithelial stem cells. Invest Ophthalmol Vis Sci 48:144–156. https://doi.org/10.1167/iovs.06-0346

    Article  PubMed  Google Scholar 

  15. Lyngholm M, Vorum H, Nielsen K et al (2008) Differences in the protein expression in limbal versus central human corneal epithelium—a search for stem cell markers. Exp Eye Res 87:96–105. https://doi.org/10.1016/j.exer.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  16. Romano AC, Espana EM, Yoo SH et al (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci 44:5125–5129. https://doi.org/10.1167/iovs.03-0628

    Article  PubMed  Google Scholar 

  17. Liang L, Sheha H, Li J et al (2009) Limbal stem cell transplantation: new progresses and challenges. Eye (Lond) 23:1946–1953. https://doi.org/10.1038/eye.2008.379

    Article  CAS  Google Scholar 

  18. Dua HS, Joseph A, Shanmuganathan VA et al (2003) Stem cell differentiation and the effects of deficiency. Eye (Lond) 17:877–885. https://doi.org/10.1038/sj.eye.6700573

    Article  CAS  Google Scholar 

  19. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102:1476–1485. https://doi.org/10.1016/s0161-6420(95)30842-1

    Article  CAS  PubMed  Google Scholar 

  20. Tseng SC, Prabhasawat P, Barton K et al (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441. https://doi.org/10.1001/archopht.116.4.431

    Article  CAS  PubMed  Google Scholar 

  21. Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722. https://doi.org/10.1016/s0161-6420(89)32833-8 (discussion 722–3)

    Article  CAS  PubMed  Google Scholar 

  22. Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993. https://doi.org/10.1016/S0140-6736(96)11188-0

    Article  CAS  PubMed  Google Scholar 

  23. Shortt AJ, Tuft SJ, Daniels JT (2010) Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul Surf 8:80–90. https://doi.org/10.1016/s1542-0124(12)70072-1

    Article  PubMed  Google Scholar 

  24. Notara M, Alatza A, Gilfillan J et al (2010) In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Exp Eye Res 90:188–195. https://doi.org/10.1016/j.exer.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  25. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343. https://doi.org/10.1016/s0092-8674(75)80001-8

    Article  CAS  PubMed  Google Scholar 

  26. Meyer-Blazejewska EA, Kruse FE, Bitterer K et al (2010) Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci 51:765–774. https://doi.org/10.1167/iovs.09-4109

    Article  PubMed  Google Scholar 

  27. Shortt AJ, Secker GA, Notara MD et al (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52:483–502. https://doi.org/10.1016/j.survophthal.2007.06.013

    Article  PubMed  Google Scholar 

  28. Pellegrini G, Rama P, Mavilio F et al (2009) Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol 217:217–228. https://doi.org/10.1002/path.2441

    Article  CAS  PubMed  Google Scholar 

  29. Rama P, Matuska S, Paganoni G et al (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155. https://doi.org/10.1056/NEJMoa0905955

    Article  CAS  PubMed  Google Scholar 

  30. Baylis O, Figueiredo F, Henein C et al (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 112:993–1002. https://doi.org/10.1002/jcb.23028

    Article  CAS  PubMed  Google Scholar 

  31. Pellegrini G, Ardigò D, Milazzo G et al (2018) Navigating market authorization: the path holoclar took to become the first stem cell product approved in the European Union. Stem Cells Transl Med 7:146–154. https://doi.org/10.1002/sctm.17-0003

    Article  PubMed  Google Scholar 

  32. Bakker A‑C, Langer B (2015) Cell-based therapies—an innovative therapeutic option in ophthalmology: treating corneal diseases with stem cells. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58:1259–1264. https://doi.org/10.1007/s00103-015-2243-1

    Article  PubMed  Google Scholar 

  33. Pinho-Gomes A‑C, Cairns J (2022) Evaluation of advanced therapy medicinal products by the national institute for health and care excellence (NICE): an updated. Pharmacoecon Open 6:147–167. https://doi.org/10.1007/s41669-021-00295-2

    Article  PubMed  Google Scholar 

  34. Daya SM, Watson A, Sharpe JR et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477. https://doi.org/10.1016/j.ophtha.2004.09.023

    Article  PubMed  Google Scholar 

  35. Purdue GF, Hunt JL, Still JM et al (1997) A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 18:52–57. https://doi.org/10.1097/00004630-199701000-00009

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Ferreyra P, Gayosso-Cerón O, Alonso-Campero R et al (2019) Experience with Epifast® cryopreserved epidermal allograft in the treatment of superficial and deep second-degree burns: retrospective study of 297 cases, 2010–2015. Burns Open 3:116–120. https://doi.org/10.1016/j.burnso.2019.04.002

    Article  Google Scholar 

  37. Ma Y, Xu Y, Xiao Z et al (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24:315–321. https://doi.org/10.1634/stemcells.2005-0046

    Article  PubMed  Google Scholar 

  38. James SE, Rowe A, Ilari L et al (2001) The potential for eye bank limbal rings to generate cultured corneal epithelial allografts. Cornea 20:488–494. https://doi.org/10.1097/00003226-200107000-00010

    Article  CAS  PubMed  Google Scholar 

  39. H‑CJ C, Yeh L‑K, Tsai Y‑J et al (2012) Expression of angiogenesis-related factors in human corneas after cultivated oral mucosal epithelial transplantation. Invest Ophthalmol Vis Sci 53:5615–5623. https://doi.org/10.1167/iovs.11-9293

    Article  CAS  Google Scholar 

  40. Ortega-Zilic N, Hunziker T, Läuchli S et al (2010) EpiDex® Swiss field trial 2004–2008. Dermatology 221:365–372. https://doi.org/10.1159/000321333

    Article  PubMed  Google Scholar 

  41. Wolosin JM, Budak MT, Akinci MAM (2004) Ocular surface epithelial and stem cell development. Int J Dev Biol 48:981–991. https://doi.org/10.1387/ijdb.041876jw

    Article  PubMed  Google Scholar 

  42. Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M et al (2009) Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 27:642–652. https://doi.org/10.1634/stemcells.2008-0721

    Article  CAS  PubMed  Google Scholar 

  43. Nieto-Miguel T, Galindo S, Reinoso R et al (2013) In vitro simulation of corneal epithelium microenvironment induces a corneal epithelial-like cell phenotype from human adipose tissue mesenchymal stem cells. Curr Eye Res 38:933–944. https://doi.org/10.3109/02713683.2013.802809

    Article  CAS  PubMed  Google Scholar 

  44. Ho JH‑C, Ma W‑H, Tseng T‑C et al (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng Part A 17:255–266. https://doi.org/10.1089/ten.TEA.2010.0106

    Article  CAS  PubMed  Google Scholar 

  45. Wang T, Xu Z, Jiang W et al (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109:74–81. https://doi.org/10.1016/j.ijcard.2005.05.072

    Article  PubMed  Google Scholar 

  46. Koppula PR, Polisetti N, Vemuganti GK (2010) Unstimulated diagnostic marrow tap—a minimally invasive and reliable source for mesenchymal stem cells. Cell Biol Int 34:275–281. https://doi.org/10.1042/CBI20090142

    Article  PubMed  Google Scholar 

  47. Kotton DN, Ma BY, Cardoso WV et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188. https://doi.org/10.1242/dev.128.24.5181

    Article  CAS  PubMed  Google Scholar 

  48. Gu S, Xing C, Han J et al (2009) Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis 15:99–107

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang T‑S, Cai L, Ji W‑Y et al (2010) Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 16:1304–1316

    PubMed  PubMed Central  Google Scholar 

  50. Yao L, Li Z, Su W et al (2012) Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One 7:e30842. https://doi.org/10.1371/journal.pone.0030842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu H, Zhang J, Liu C‑Y et al (2010) Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS One 5:e10707. https://doi.org/10.1371/journal.pone.0010707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zajicova A, Pokorna K, Lencova A et al (2010) Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant 19:1281–1290. https://doi.org/10.3727/096368910X509040

    Article  PubMed  Google Scholar 

  53. Hayashi R, Ishikawa Y, Ito M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 7:e45435. https://doi.org/10.1371/journal.pone.0045435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89. https://doi.org/10.1038/nrm3043

    Article  CAS  PubMed  Google Scholar 

  55. Masip M, Veiga A, Izpisúa Belmonte JC et al (2010) Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod 16:856–868. https://doi.org/10.1093/molehr/gaq059

    Article  CAS  PubMed  Google Scholar 

  56. Barzilay R, Melamed E, Offen D (2009) Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 27:2509–2515. https://doi.org/10.1002/stem.172

    Article  CAS  PubMed  Google Scholar 

  57. Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30. https://doi.org/10.1016/j.stem.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li G, Xu F, Zhu J et al (2015) Transcription factor PAX6 (paired box 6) controls limbal stem cell lineage in development and disease. J Biol Chem 290:20448–20454. https://doi.org/10.1074/jbc.M115.662940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li W, Chen Y‑T, Hayashida Y et al (2008) Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. J Pathol 214:114–122. https://doi.org/10.1002/path.2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collinson JM, Chanas SA, Hill RE et al (2004) Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6(+/−) mouse. Invest Ophthalmol Vis Sci 45:1101–1108. https://doi.org/10.1167/iovs.03-1118

    Article  PubMed  Google Scholar 

  61. Ramaesh K, Ramaesh T, Dutton GN et al (2005) Evolving concepts on the pathogenic mechanisms of aniridia related keratopathy. Int J Biochem Cell Biol 37:547–557. https://doi.org/10.1016/j.biocel.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  62. Koster MI, Roop DR (2004) p63 and epithelial appendage development. Differentiation 72:364–370. https://doi.org/10.1111/j.1432-0436.2004.07208002.x

    Article  CAS  PubMed  Google Scholar 

  63. Di Iorio E, Barbaro V, Ruzza A et al (2005) Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A 102:9523–9528. https://doi.org/10.1073/pnas.0503437102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang D‑Y, Cheng C‑C, Kao M‑H et al (2005) Regulation of limbal keratinocyte proliferation and differentiation by TAp63 and DeltaNp63 transcription factors. Invest Ophthalmol Vis Sci 46:3102–3108. https://doi.org/10.1167/iovs.05-0051

    Article  PubMed  Google Scholar 

  65. Cheng C‑C, Wang D‑Y, Kao M‑H et al (2009) The growth-promoting effect of KGF on limbal epithelial cells is mediated by upregulation of DeltaNp63alpha through the p38 pathway. J Cell Sci 122:4473–4480. https://doi.org/10.1242/jcs.054791

    Article  CAS  PubMed  Google Scholar 

  66. Barbaro V, Testa A, Di Iorio E et al (2007) C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol 177:1037–1049. https://doi.org/10.1083/jcb.200703003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu R, Qu Y, Ge J et al (2012) Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells. Stem Cells 30:753–761. https://doi.org/10.1002/stem.1032

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura T, Ohtsuka T, Sekiyama E et al (2008) Hes1 regulates corneal development and the function of corneal epithelial stem/progenitor cells. Stem Cells 26:1265–1274. https://doi.org/10.1634/stemcells.2007-1067

    Article  CAS  PubMed  Google Scholar 

  69. Kulkarni BB, Tighe PJ, Mohammed I et al (2010) Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics 11:526. https://doi.org/10.1186/1471-2164-11-526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shortt AJ, Secker GA, Munro PM et al (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409. https://doi.org/10.1634/stemcells.2006-0580

    Article  PubMed  Google Scholar 

  72. Schlötzer-Schrehardt U, Dietrich T, Saito K et al (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860. https://doi.org/10.1016/j.exer.2007.08.020

    Article  CAS  PubMed  Google Scholar 

  73. Ljubimov AV, Burgeson RE, Butkowski RJ et al (1995) Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 72:461–473

    CAS  PubMed  Google Scholar 

  74. Shimmura S, Miyashita H, Higa K et al (2006) Proteomic analysis of soluble factors secreted by limbal fibroblasts. Mol Vis 12:478–484

    CAS  PubMed  Google Scholar 

  75. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  76. Levis H, Daniels JT (2009) New technologies in limbal epithelial stem cell transplantation. Curr Opin Biotechnol 20:593–597. https://doi.org/10.1016/j.copbio.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  77. Fagerholm P, Lagali NS, Ong JA et al (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35:2420–2427. https://doi.org/10.1016/j.biomaterials.2013.11.079

    Article  CAS  PubMed  Google Scholar 

  78. Gross J, Kirk D (1958) The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem 233:355–360

    Article  CAS  Google Scholar 

  79. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76:1274–1278. https://doi.org/10.1073/pnas.76.3.1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abou Neel EA, Cheema U, Knowles JC et al (2006) Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2:986–992. https://doi.org/10.1039/b609784g

    Article  CAS  PubMed  Google Scholar 

  81. Lotz C, Schmid FF, Oechsle E et al (2017) Cross-linked collagen hydrogel matrix resisting contraction to facilitate full-thickness skin equivalents. ACS Appl Mater Interfaces 9:20417–20425. https://doi.org/10.1021/acsami.7b04017

    Article  CAS  PubMed  Google Scholar 

  82. Petsch C, Schlötzer-Schrehardt U, Meyer-Blazejewska E et al (2014) Novel collagen membranes for the reconstruction of the corneal surface. Tissue Eng Part A 20:2378–2389. https://doi.org/10.1089/ten.TEA.2013.0552

    Article  CAS  PubMed  Google Scholar 

  83. McIntosh Ambrose W, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831. https://doi.org/10.1002/jbm.b.31351

    Article  CAS  Google Scholar 

  84. Phu D, Wray LS, Warren RV et al (2011) Effect of substrate composition and alignment on corneal cell phenotype. Tissue Eng Part A 17:799–807. https://doi.org/10.1089/ten.TEA.2009.0724

    Article  CAS  PubMed  Google Scholar 

  85. Brown RA, Wiseman M, Chuo C‑B et al (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15:1762–1770. https://doi.org/10.1002/adfm.200500042

    Article  Google Scholar 

  86. Levis HJ, Menzel-Severing J, Drake RAL et al (2013) Plastic compressed collagen constructs for ocular cell culture and transplantation: a new and improved technique of confined fluid loss. Curr Eye Res 38:41–52. https://doi.org/10.3109/02713683.2012.725799

    Article  CAS  PubMed  Google Scholar 

  87. Schrader S, Witt J, Geerling G (2018) Plastic compressed collagen transplantation—a new option for corneal surface reconstruction? Acta Ophthalmol 96:e757–e758. https://doi.org/10.1111/aos.13649

    Article  PubMed  Google Scholar 

  88. Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32:3375–3386. https://doi.org/10.1016/j.biomaterials.2011.01.052

    Article  CAS  PubMed  Google Scholar 

  89. Borrelli M, Joepen N, Reichl S et al (2015) Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials 42:112–120. https://doi.org/10.1016/j.biomaterials.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  90. Bray LJ, George KA, Ainscough SL et al (2011) Human corneal epithelial equivalents constructed on bombyx mori silk fibroin membranes. Biomaterials 32:5086–5091. https://doi.org/10.1016/j.biomaterials.2011.03.068

    Article  CAS  PubMed  Google Scholar 

  91. Grolik M, Szczubiałka K, Wowra B et al (2012) Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci Mater Med 23:1991–2000. https://doi.org/10.1007/s10856-012-4666-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma S, Mohanty S, Gupta D et al (2011) Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis 17:2898–2910

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Barbaro V, Ferrari S, Fasolo A et al (2009) Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis 15:2084–2093

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shafiq MA, Gemeinhart RA, Yue BYJT et al (2012) Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods 18:340–348. https://doi.org/10.1089/ten.TEC.2011.0072

    Article  CAS  PubMed  Google Scholar 

  95. Li W, Hayashida Y, Chen Y‑T et al (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17:26–36. https://doi.org/10.1038/sj.cr.7310137

    Article  CAS  PubMed  Google Scholar 

  96. Ordonez P, Di Girolamo N (2012) Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 30:100–107. https://doi.org/10.1002/stem.794

    Article  CAS  PubMed  Google Scholar 

  97. Chen S‑Y, Hayashida Y, Chen M‑Y et al (2011) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548. https://doi.org/10.1089/ten.TEC.2010.0609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737. https://doi.org/10.1016/j.biomaterials.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  99. Bray LJ, George KA, Hutmacher DW et al (2012) A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials 33:3529–3538. https://doi.org/10.1016/j.biomaterials.2012.01.045

    Article  CAS  PubMed  Google Scholar 

  100. Dellatore SM, Garcia AS, Miller WM (2008) Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 19:534–540. https://doi.org/10.1016/j.copbio.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yan J, Qiang L, Gao Y et al (2012) Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 100:527–535. https://doi.org/10.1002/jbm.a.33301

    Article  CAS  PubMed  Google Scholar 

  102. Zieris A, Chwalek K, Prokoph S et al (2011) Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. J Control Release 156:28–36. https://doi.org/10.1016/j.jconrel.2011.06.042

    Article  CAS  PubMed  Google Scholar 

  103. Menzel-Severing J, Kruse FE, Schlötzer-Schrehardt U (2013) Stem cell-based therapy for corneal epithelial reconstruction: present and future. Can J Ophthalmol 48:13–21. https://doi.org/10.1016/j.jcjo.2012.11.009

    Article  PubMed  Google Scholar 

  104. Yamamizu K, Piao Y, Sharov AA et al (2013) Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports 1:545–559. https://doi.org/10.1016/j.stemcr.2013.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Menzel-Severing.

Ethics declarations

Interessenkonflikt

J. Menzel-Severing, K. Spaniol, F. Groeber-Becker und G. Geerling geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzel-Severing, J., Spaniol, K., Groeber-Becker, F. et al. Regenerative Medizin für das Hornhautepithel. Ophthalmologie 119, 891–901 (2022). https://doi.org/10.1007/s00347-022-01674-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-022-01674-8

Schlüsselwörter

Keywords

Navigation