Skip to main content
Log in

Jenseits von Ästhetik – Regenerative Medizin bei schweren Erkrankungen der okulären Adnexe

Beyond esthetics—Regenerative medicine for severe diseases of the adnexa oculi

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

An Erratum to this article was published on 04 August 2022

This article has been updated

Zusammenfassung

Hintergrund

Die Wiederherstellung der Lid- und Tränenfunktion sind wichtige Schritte auf dem Weg zu einer intakten Augenoberfläche. Für die Lidrekonstruktion und Tränendrüsenregeneration klinisch zur Verfügung stehende Ersatzgewebe bzw. Therapiemöglichkeiten stoßen bei Patienten mit schweren Erkrankungen der okulären Adnexe oft an ihre Grenzen. Mehrere Ansätze der regenerativen Medizin sind in den letzten Jahren intensiv erforscht und teilweise klinisch erprobt worden. Sie umfassen rekonstruktive Ansätze mit neuartigen Gewebematrices im Bereich der Lidchirurgie sowie Stammzelltherapien zur Wiederherstellung der Tränendrüsenfunktion.

Material und Methoden

Die aktuelle Literatur wird vorgestellt und ein Überblick über klinische angewandte sowie derzeit erforschte Gewebe zur Lidrekonstruktion gegeben. Weiterhin werden Ansätze zur Stammzelltherapie der Tränendrüse und eigene Ergebnisse vorgestellt.

Ergebnisse

Azelluläre Dermis wurde bereits mehrfach erfolgreich zur Lidrekonstruktion eingesetzt und stellt v. a. bei eingeschränkter Verfügbarkeit von autologem Gewebe eine mögliche Option dar. In vitro gezüchtete, zelluläre Konstrukte oder Gewebe mit gentechnisch veränderten Zellen wurden bereits in der Dermatologie zur Behandlung von Verbrennungen oder schweren Genodermatosen erfolgreich angewandt. Erste Studien zur Stammzelltherapie von schwerem trockenem Auge bei Sjögren-Syndrom zeigen eine sichere und effektive Anwendung von mesenchymalen Stammzellen nach Injektion in die Tränendrüse.

Schlussfolgerungen

Aufgrund der Limitationen von derzeit zur Verfügung stehenden Ersatzgeweben besteht klinisch ein Bedarf für die Entwicklung neuer Materialien für die Rekonstruktion der okulären Adnexe. In vitro gezüchtete Konstrukte mit allogenen und/oder gentechnisch veränderten Zellen finden langsam ihren Weg in die Klinik. Die Effektivität und Wirkungsweise von Stammzellen bei schwerem trockenem Auge werden aktuell klinisch erprobt.

Abstract

Background

Restoration of eyelid and lacrimal functions are important steps on the way to an intact ocular surface. Clinically available substitute tissues or therapeutic options for eyelid reconstruction and lacrimal gland regeneration often reach their limits in patients with severe diseases of the adnexa oculi. Several approaches in regenerative medicine have been intensively researched and clinically tested in recent years. These range from reconstructive approaches with novel tissue matrices in the field of eyelid surgery to stem cell therapies to regenerate lacrimal gland function.

Material and methods

The state of the art in the current literature is presented and an overview of clinically applied or currently researched tissues for eyelid reconstruction is given. Furthermore, approaches in stem cell therapy of the lacrimal gland as well as own results are presented.

Results

Acellular dermis has been successfully used for eyelid reconstruction and represents a viable option in cases of limited availability of autologous tissue. In vitro grown cellular constructs or tissues with genetically modified cells have already been successfully applied in dermatology for the treatment of burns or severe genodermatoses. First studies on stem cell therapy for severe dry eye in Sjögren syndrome showed a safe and effective application of mesenchymal stem cells by injection into the lacrimal gland.

Conclusion

Due to the limitations of currently available replacement tissues, there is a clinical need for the development of new materials for adnexa oculi reconstruction. Constructs grown in vitro with allogeneic and/or genetically engineered cells are slowly making their way into clinical practice. The efficacy and mode of action of stem cells in severe dry eye are subject matters of current clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Change history

Literatur

  1. Witt J, Dietrich J, Geerling G (2021) Anatomie und Physiologie der Augenoberfläche. In: Messmer E (Hrsg) Diagnose und Therapie des Trockenen Auges, 3. Aufl. Uni-Med,

    Google Scholar 

  2. Alghoul M, Pacella SJ, McClellan WT, Codner MA (2013) Eyelid reconstruction. Plast Reconstr Surg 132:288e–302e

    Article  CAS  PubMed  Google Scholar 

  3. Starks V, Freitag SK (2020) Periorbital surgical principles. In: Freitag SK, Lee GN, Lefebvre DR, Yoon MK (Hrsg) Eyelid reconstruction. Thieme, S 12–27

    Google Scholar 

  4. Geerling G, Borrelli M (2005) Adnexal surgery for severe ocular surface disease. Semin Ophthalmol 20:101–112

    Article  PubMed  Google Scholar 

  5. Borrelli M, Geerling G, Spaniol K, Witt J (2020) Eye socket regeneration and reconstruction. Curr Eye Res 45:253–264

    Article  CAS  PubMed  Google Scholar 

  6. Larsen SD, Heegaard S, Toft PB (2017) Histological and clinical evaluation of the hard palate mucous membrane graft for treatment of lower eyelid retraction. Acta Ophthalmol 95:295–298

    Article  PubMed  Google Scholar 

  7. Fin A, De Biasio F, Lanzetta P, Mura S, Tarantini A, Parodi PC (2019) Posterior lamellar reconstruction: a comprehensive review of the literature. Orbit 38:51–66

    Article  PubMed  Google Scholar 

  8. Henderson HW, Collin JR (2008) Mucous membrane grafting. Dev Ophthalmol 41:230–242

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Peng SW, Wang YY, Zheng SB, Wang Y, Chen GQ (2010) The use of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tarsal repair in eyelid reconstruction in the rat. Biomaterials 31:7512–7518

    Article  CAS  PubMed  Google Scholar 

  10. de Jong-Hesse Y, Paridaens DA (2006) Correction of lower eyelid retraction with a porous polyethylene (Medpor) lower eyelid spacer—Medpor spacer in lower eyelid retraction. Klin Monbl Augenheilkd 223:577–582

    Article  PubMed  Google Scholar 

  11. Mavrikakis I, Francis N, Poitelea C, Parkin B, Brittain P, Olver J (2009) Medpor lower eyelid spacer: does it biointegrate? Orbit 28:58–62

    Article  PubMed  Google Scholar 

  12. Tan J, Olver J, Wright M, Maini R, Neoh C, Dickinson AJ (2004) The use of porous polyethylene (Medpor) lower eyelid spacers in lid heightening and stabilisation. Br J Ophthalmol 88:1197–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spaniol K, Holtmann C, Geerling G, Schrader S (2017) New approaches to ocular surface reconstruction beyond the cornea. Ophthalmologe 114:307–317

    Article  CAS  PubMed  Google Scholar 

  14. Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW et al (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35:2420–2427

    Article  CAS  PubMed  Google Scholar 

  15. Xu P, Gao Q, Feng X, Lou L, Zhu T, Gao C et al (2019) A biomimetic tarso-conjunctival biphasic scaffold for eyelid reconstruction in vivo. Biomater Sci 7:3373–3385

    Article  CAS  PubMed  Google Scholar 

  16. Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3:159–173

    Article  CAS  Google Scholar 

  17. Cramer MC, Badylak SF (2020) Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng 48:2132–2153

    Article  PubMed  Google Scholar 

  18. Witt J, Mertsch S, Borrelli M, Dietrich J, Geerling G, Schrader S et al (2018) Decellularised conjunctiva for ocular surface reconstruction. Acta Biomater 67:259–269

    Article  CAS  PubMed  Google Scholar 

  19. Borrelli M, Unterlauft J, Kleinsasser N, Geerling G (2012) Decellularized porcine derived membrane (Tarsys®) for correction of lower eyelid retraction. Orbit 31:187–189

    Article  PubMed  Google Scholar 

  20. Liao SL, Wei YH (2013) Correction of lower lid retraction using tarSys bioengineered grafts for graves ophthalmopathy. Am J Ophthalmol 156:387–392.e1

    Article  PubMed  Google Scholar 

  21. Scruggs JT, McGwin G Jr., Morgenstern KE (2015) Use of noncadaveric human acellular dermal tissue (belladerm) in lower eyelid retraction repair. Ophthalmic Plast Reconstr Surg 31:379–384

    Article  PubMed  Google Scholar 

  22. McCord C, Nahai FR, Codner MA, Nahai F, Hester TR (2008) Use of porcine acellular dermal matrix (Enduragen) grafts in eyelids: a review of 69 patients and 129 eyelids. Plast Reconstr Surg 122:1206–1213

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan SA, Dailey RA (2003) Graft contraction: a comparison of acellular dermis versus hard palate mucosa in lower eyelid surgery. Ophthalmic Plast Reconstr Surg 19:14–24

    Article  PubMed  Google Scholar 

  24. Barmettler A, Heo M (2018) A prospective, randomized comparison of lower eyelid retraction repair with autologous auricular cartilage, bovine acellular dermal matrix (Surgimend), and porcine Acellular dermal matrix (Enduragen) spacer grafts. Ophthalmic Plast Reconstr Surg 34:266–273

    Article  PubMed  Google Scholar 

  25. Levin F, Turbin RE, Langer PD (2011) Acellular human dermal matrix as a skin substitute for reconstruction of large periocular cutaneous defects. Ophthalmic Plast Reconstr Surg 27:44–47

    Article  PubMed  Google Scholar 

  26. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M et al (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol 134:293–300

    Article  CAS  PubMed  Google Scholar 

  27. Veves A, Falanga V, Armstrong DG, Sabolinski ML (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24:290–295

    Article  CAS  PubMed  Google Scholar 

  28. Food and Drug Administration (2021) CfDEaR. BL 125730/0 Approval Letter

    Google Scholar 

  29. Gibson ALF, Holmes JHT, Shupp JW, Smith D, Joe V, Carson J et al (2021) A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns 47:1024–1037

    Article  PubMed  Google Scholar 

  30. Culican SM, Custer PL (2002) Repair of cicatricial ectropion in an infant with harlequin ichthyosis using engineered human skin. Am J Ophthalmol 134:442–443

    Article  PubMed  Google Scholar 

  31. Bee YS, Alonzo B, Ng JD (2015) Review of alloderm acellular human dermis regenerative tissue matrix in multiple types of oculofacial plastic and reconstructive surgery. Ophthalmic Plast Reconstr Surg 31:348–351

    Article  PubMed  Google Scholar 

  32. Chang M, Ahn SE, Baek S (2014) The effect and applications of acellular dermal allograft (AlloDerm) in ophthalmic plastic surgery. J Craniomaxillofac Surg 42:695–699

    Article  PubMed  Google Scholar 

  33. Shorr N, Perry JD, Goldberg RA, Hoenig J, Shorr J (2000) The safety and applications of acellular human dermal allograft in ophthalmic plastic and reconstructive surgery: a preliminary report. Ophthal Plast Reconstr Surg 16:223–230

    Article  CAS  PubMed  Google Scholar 

  34. Eah KS, Sa HS (2021) Reconstruction of Large Upper Eyelid Defects Using the Reverse Hughes Flap Combined With a Sandwich Graft of an Acellular Dermal Matrix. Ophthalmic Plast Reconstr Surg 37:S27–s30

    Article  PubMed  Google Scholar 

  35. Lee JH, Park KR, Kim TG, Ha JH, Chung KJ, Kim YH et al (2013) A comparative study of CG Cryoderm and Alloderm in direct-to-implant immediate breast reconstruction. Arch Plast Surg 40:374–379

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eo PS, Lee JS, Lee JW, Choi KY, Chung HY, Cho BC et al (2021) Usefulness of meshed SurgiMend in direct-to-implant breast reconstruction. Aesthetic Plast Surg 27:69–75

    Article  Google Scholar 

  37. Mancera N, Schneider A, Margo CE, Bajric J (2019) Inflammatory reaction to decellularized porcine-derived xenograft for lower eyelid retraction. Ophthalmic Plast Reconstr Surg 35:e95–e97

    Article  PubMed  Google Scholar 

  38. Bilousova G (2019) Gene therapy for skin fragility diseases: the new generation. J Invest Dermatol 139:1634–1637

    Article  CAS  PubMed  Google Scholar 

  39. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L et al (2017) Regeneration of the entire human epidermis using transgenic stem cells. Nature 551:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fine JD, Johnson LB, Weiner M, Suchindran C (2008) Cause-specific risks of childhood death in inherited epidermolysis bullosa. J Pediatr 152:276–280

    Article  PubMed  Google Scholar 

  41. Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C et al (2021) Transgenic epidermal cultures for junctional epidermolysis bullosa—5-year outcomes. N Engl J Med 385:2264–2270

    Article  PubMed  Google Scholar 

  42. Greinke J (2022) Schmetterlingskrankheit: Haut-OP sorgte für Aufsehen weltweit – So geht es Hassan heute. Westfälischer Anzeiger Verlagsgesellschaft mbH & Co KG

  43. Dietrich J, Massie I, Roth M, Geerling G, Mertsch S, Schrader S (2016) Development of causative treatment strategies for lacrimal gland insufficiency by tissue engineering and cell therapy. Part 1: regeneration of lacrimal gland tissue: Can we stimulate lacrimal gland renewal in vivo? Curr Eye Res 41:1131–1142

    Article  CAS  PubMed  Google Scholar 

  44. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F et al (2017) TFOS DEWS II epidemiology report. Ocul Surf 15:334–365

    Article  PubMed  Google Scholar 

  45. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S et al (2017) TFOS DEWS II pathophysiology report. Ocul Surf 15:438–510

    Article  PubMed  Google Scholar 

  46. Rocha EM, Alves M, Rios JD, Dartt DA (2008) The aging lacrimal gland: changes in structure and function. Ocul Surf 6:162–174

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gomes JAP, Azar DT, Baudouin C, Efron N, Hirayama M, Horwath-Winter J et al (2017) TFOS DEWS II iatrogenic report. Ocul Surf 15:511–538

    Article  PubMed  Google Scholar 

  48. Jones L, Downie LE, Korb D, Benitez-Del-Castillo JM, Dana R, Deng SX et al (2017) TFOS DEWS II management and therapy report. Ocul Surf 15:575–628

    Article  PubMed  Google Scholar 

  49. Noble BA, Loh RS, MacLennan S, Pesudovs K, Reynolds A, Bridges LR et al (2004) Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. Br J Ophthalmol 88:647–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geerling G, Sieg P (2008) Transplantation of the major salivary glands. Dev Ophthalmol 41:255–268

    Article  PubMed  Google Scholar 

  51. Wakamatsu TH, Sant AEBPP, Cristovam PC, Alves VAF, Wakamatsu A, Gomes JAP (2017) Minor salivary gland transplantation for severe dry eyes. Cornea 36:S26–S33

    Article  PubMed  Google Scholar 

  52. Su JZ, Yang NY, Liu XJ, Cai ZG, Lv L, Zhang L et al (2014) Obstructive sialadenitis of a transplanted submandibular gland: chronic inflammation secondary to ductal obstruction. Br J Ophthalmol 98:1672–1677

    Article  PubMed  Google Scholar 

  53. Dietrich J, Schrader S (2020) Towards lacrimal gland regeneration: current concepts and experimental approaches. Curr Eye Res 45:230–240

    Article  PubMed  Google Scholar 

  54. Zoukhri D, Fix A, Alroy J, Kublin CL (2008) Mechanisms of murine lacrimal gland repair after experimentally induced inflammation. Invest Ophthalmol Vis Sci 49:4399–4406

    Article  PubMed  Google Scholar 

  55. Dietrich J, Schlegel C, Roth M, Witt J, Geerling G, Mertsch S et al (2018) Comparative analysis on the dynamic of lacrimal gland damage and regeneration after Interleukin-1alpha or duct ligation induced dry eye disease in mice. Exp Eye Res 172:66–77

    Article  CAS  PubMed  Google Scholar 

  56. Dietrich J, Ott L, Roth M, Witt J, Geerling G, Mertsch S et al (2019) MSC transplantation improves lacrimal gland regeneration after surgically induced dry eye disease in mice. Sci Rep 9:18299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Villatoro AJ, Fernández V, Claros S, Rico-Llanos GA, Becerra J, Andrades JA (2015) Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int. https://doi.org/10.1155/2015/527926

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bittencourt MK, Barros MA, Martins JF, Vasconcellos JP, Morais BP, Pompeia C et al (2016) Allogeneic mesenchymal stem cell transplantation in dogs with keratoconjunctivitis Sicca. Cell Med 8:63–77

    Article  PubMed  PubMed Central  Google Scholar 

  59. Møller-Hansen M, Larsen AC, Toft PB, Lynggaard CD, Schwartz C, Bruunsgaard H et al (2021) Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocul Surf 19:43–52

    Article  PubMed  Google Scholar 

  60. Ledford H (2021) Scientists grew tiny tear glands in a dish—then made them cry. Nature 591:515

    Article  CAS  PubMed  Google Scholar 

  61. Massie I, Dietrich J, Roth M, Geerling G, Mertsch S, Schrader S (2016) Development of causative treatment strategies for lacrimal gland insufficiency by tissue engineering and cell therapy. Part 2: reconstruction of lacrimal gland tissue: what has been achieved so far and what are the remaining challenges? Curr Eye Res 41:1255–1265

    Article  PubMed  Google Scholar 

  62. Massie I, Spaniol K, Barbian A, Geerling G, Metzger M, Schrader S (2018) Development of lacrimal gland spheroids for lacrimal gland tissue regeneration. J Tissue Eng Regen Med 12:e2001–e2009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Witt.

Ethics declarations

Interessenkonflikt

J. Witt, M. Møller-Hansen, M. Borrelli, C. Holtmann, S. Heegaard und G. Geerling geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

In dem Originalbeitrag wurde der Name des Autors S. Heegaard fälschlicherweise als S. Heegard angegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witt, J., Møller-Hansen, M., Borrelli, M. et al. Jenseits von Ästhetik – Regenerative Medizin bei schweren Erkrankungen der okulären Adnexe. Ophthalmologie 119, 878–890 (2022). https://doi.org/10.1007/s00347-022-01643-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-022-01643-1

Schlüsselwörter

Keywords

Navigation