Skip to main content
Log in

Indikationsstellung zum Crosslinking und klinische Ergebnisse neuer kornealer Crosslinking-Techniken

Treatment indications for corneal crosslinking and clinical results of new corneal crosslinking techniques

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Beim Keratokonus wird die Quervernetzung der Hornhaut (korneales Crosslinking [CXL]) zur Verfestigung und Stabilisierung der Kornea eingesetzt, um einer weiteren Progression mit einhergehender Visusverschlechterung und ggf. notwendiger Keratoplastik vorzubeugen. Die korrekte Indikationsstellung ist in diesem Zusammenhang unabdingbar. Seit Einführung des ursprünglichen Dresdner Protokolls wurden weitere Crosslinking-Protokolle zur Optimierung des Behandlungserfolges vorgestellt.

Ziel der Arbeit

Es werden relevante Parameter zur Indikationsstellung und klinische Ergebnisse der neuen CXL-Protokolle erläutert.

Methoden

Derzeit gültige Indikationskriterien für ein CXL bei Keratokonus, PubMed-Recherche relevanter Arbeiten sowie eigene Erfahrungen mit verschiedenen CXL-Protokollen werden vorgestellt.

Ergebnisse

Die Reproduzierbarkeit von topographischen Parametern ist abhängig vom Stadium des Keratokonus. Das beschleunigte CXL wie auch das transepitheliale CXL mit hyperoxischer Umgebung zeigen eine vergleichbare Effizienz bei kürzerer Operationsdauer und möglicherweise niedrigerer Komplikationsrate. Das maßgeschneiderte CXL mit individualisiertem Bestrahlungsprofil liefert verbesserte Ergebnisse mit schnellerer Epithelheilung. Niedrigere UV-Energiedosen ermöglichen die Durchführung einer CXL-Behandlung bei minimaler stromaler Pachymetrie von weniger als 400 µm vor der UV-Bestrahlung. Die Kombination aus CXL mit PRK (photorefraktive Keratektomie) ermöglicht Visusverbesserungen, steigert jedoch auch das Risiko von Visusverlust.

Schlussfolgerung

Aktuelle Indikationsregeln zum CXL vernachlässigen die reduzierte Wiederholbarkeit von topo- und tomographischen Messungen bei Keratokonus. Die neuen, hier vorgestellten CXL-Techniken stellen eine Alternative mit ähnlicher und/oder besserer Wirksamkeit im Vergleich zum Standard-CXL dar. Die Kombination von CXL mit PRK bietet bei Patienten mit Kontaktlinsenintoleranz eine Möglichkeit zur Visusrehabilitation.

Abstract

Background

Corneal crosslinking (CXL) is used in keratoconus to strengthen and stabilize the cornea and to prevent further progression with subsequent visual loss and the possible need for keratoplasty. Correct treatment indications is crucial in this context. Since the introduction of the initial Dresden protocol, other modified CXL protocols have been proposed to optimize treatment success.

Objective

The relevant parameters for treatment indications are explained and the clinical results of new CXL protocols are presented.

Methods

The currently valid criteria with respect to the indications for CXL in keratoconus, PubMed search for relevant publications and own experiences with different CXL protocols are presented.

Results

The reproducibility of topographic parameters depends on the stage of the keratoconus. Accelerated CXL as well as transepithelial CXL with a hyperoxic environment show comparable efficiency with shorter surgery time and possibly lower complication rates. Customized CXL with an individualized UV irradiation profile provides improved results with faster epithelial healing. Lower UV energy doses enable CXL to be conducted in eyes with minimal stromal pachymetry of less than 400 µm before irradiation. The combination of CXL with photorefractive keratectomy (PRK) provides visual acuity improvements but also increases the risk of visual loss.

Conclusion

Current indication rules for CXL neglect the reduced reproducability of topographic and tomographic measurements in keratoconus. The latest CXL protocols presented here provide a safe alternative with similar and/or better efficacy compared to standard CXL. The combination of CXL with PRK offers an option for visual rehabilitation in patients with contact lens intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Spoerl E, Huhle M, Seiler T (1998) Induction of cross-links in corneal tissue. Exp Eye Res 66(1):97–103

    Article  CAS  PubMed  Google Scholar 

  2. Andreassen TT, Simonsen AH, Oxlund H (1980) Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 31(4):435–441

    Article  CAS  PubMed  Google Scholar 

  3. Seiler TG et al (2013) Complications of corneal cross-linking. Ophthalmologe 110(7):639–644

    Article  CAS  PubMed  Google Scholar 

  4. Gomes JA et al (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34(4):359–369

    Article  PubMed  Google Scholar 

  5. Gemeinsamer Bundesausschuss (2018) Abschlussbericht Beratungsverfahren gemäß § 135 Abs. 1 SGB V (Vertragsärztliche Versorgung) UV-Vernetzung mit Riboflavin bei Keratokonus, Stand: 17. Oktober 2018

  6. ISO/TC172/SC7, C., ISO 19980:2021 (en) Ophthalmic instruments—Corneal topographers.

  7. Seiler TG, Mueller M, Baiao MT (2021) Repeatability and comparison of corneal tomography in mild to severe keratoconus between the anterior segment OCT MS-39 and pentacam HR. J Refract Surg (In Press)

  8. Gustafsson I et al (2020) Association between keratoconus disease severity and repeatability in measurements of parameters for the assessment of progressive disease. Plos One 15(2):e228992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kreps EO et al (2020) Repeatability of the pentacam HR in various grades of keratoconus. Am J Ophthalmol 219:154–162

    Article  PubMed  Google Scholar 

  10. de Luis Eguileor B et al (2021) Multicentre study: reliability and repeatability of Scheimpflug system measurement in keratoconus. Br J Ophthalmol 105(1):22–26

    Article  PubMed  Google Scholar 

  11. Sharma R et al (2009) Clinical profile and risk factors for keratoplasty and development of hydrops in north Indian patients with keratoconus. Cornea 28(4):367–370

    Article  PubMed  Google Scholar 

  12. Spoerl E, Seiler T (1999) Techniques for stiffening the cornea. J Refract Surg 15(6):711–713

    CAS  PubMed  Google Scholar 

  13. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627

    Article  CAS  PubMed  Google Scholar 

  14. Spoerl E et al (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26(4):385–389

    Article  PubMed  Google Scholar 

  15. Wittig-Silva C et al (2014) A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 121(4):812–821

    Article  PubMed  Google Scholar 

  16. Hersh PS et al (2017) United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology 124(9):1259–1270

    Article  PubMed  Google Scholar 

  17. Lang PZ et al (2019) Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea 38(4):433–441

    Article  PubMed  Google Scholar 

  18. Fischinger I et al (2018) Corneal crosslinking (CXL) with 18-mW/cm(2) irradiance and 5.4-J/cm(2) radiant exposure-early postoperative safety. Graefes Arch Clin Exp Ophthalmol 256(8):1521–1525

    Article  PubMed  Google Scholar 

  19. Hammer A et al (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci 55(5):2881–2884

    Article  PubMed  Google Scholar 

  20. Brittingham S, Tappeiner C, Frueh BE (2014) Corneal cross-linking in keratoconus using the standard and rapid treatment protocol: differences in demarcation line and 12-month outcomes. Invest Ophthalmol Vis Sci 55(12):8371–8376

    Article  PubMed  Google Scholar 

  21. Shetty R et al (2015) Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol 160(2):243–249

    Article  PubMed  Google Scholar 

  22. Mazzotta C et al (2014) Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye 28(10):1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Touboul D et al (2012) Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg 28(11):769–776

    Article  PubMed  Google Scholar 

  24. Shajari M et al (2019) Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis. Acta Ophthalmol 97(1):e22–e35

    Article  PubMed  Google Scholar 

  25. Ng AL, Chan TC, Cheng AC (2016) Conventional versus accelerated corneal collagen cross-linking in the treatment of keratoconus. J Clin Exp Ophthalmol 44(1):8–14

    Article  Google Scholar 

  26. Moramarco A et al (2020) Efficacy and safety of accelerated corneal cross-linking for progressive keratoconus: a 5‑year follow-up study. J Refract Surg 36(11):724–730

    Article  PubMed  Google Scholar 

  27. Hatch W et al (2020) Accelerated corneal cross-linking: efficacy, risk of progression, and characteristics affecting outcomes. A large, single-center prospective study. Am J Ophthalmol 213:76–87

    Article  PubMed  Google Scholar 

  28. Koller T, Mrochen M, Seiler T (2009) Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 35(8):1358–1362

    Article  PubMed  Google Scholar 

  29. Seiler TG et al (2019) Riboflavin concentrations at the Endothelium during corneal cross-linking in humans. Invest Ophthalmol Vis Sci 60(6):2140–2145

    Article  CAS  PubMed  Google Scholar 

  30. Hafezi F et al (2021) Individualized corneal cross-linking with riboflavin and UV‑A in Ultrathin corneas: the sub400 protocol. Am J Ophthalmol 224:133–142

    Article  PubMed  Google Scholar 

  31. Franke MAD et al (2021) Corneal riboflavin gradients and UV-absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1 to 0.5. Exp Eye Res 213:108842

    Article  CAS  PubMed  Google Scholar 

  32. Seiler TG et al (2016) Customized corneal cross-linking: one-year results. Am J Ophthalmol 166:14–21

    Article  PubMed  Google Scholar 

  33. Seiler TG et al (2019) Brillouin spectroscopy of normal and Keratoconus corneas. Am J Ophthalmol 202:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mazzotta C et al (2016) Accelerated corneal collagen cross-linking using topography-guided UV‑A energy emission: preliminary clinical and morphological outcomes. J Ophthalmol 2016:2031031

    PubMed  PubMed Central  Google Scholar 

  35. Cassagne M et al (2017) Customized topography-guided corneal collagen cross-linking for keratoconus. J Refract Surg 33(5):290–297

    Article  PubMed  Google Scholar 

  36. Vinciguerra P et al (2021) New perspectives in keratoconus treatment: an update on iontophoresis-assisted corneal collagen crosslinking. Int Ophthalmol 41(5):1909–1916

    Article  PubMed  Google Scholar 

  37. Caporossi A et al (2013) Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg 39(8):1157–1163

    Article  PubMed  Google Scholar 

  38. Kamaev P et al (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 53(4):2360–2367

    Article  PubMed  Google Scholar 

  39. Richoz O et al (2013) The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV‑A is oxygen dependent. Transl Vis Sci Technol 2(7):6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Seiler TG et al (2021) Oxygen kinetics during corneal cross-linking with and without supplementary oxygen. Am J Ophthalmol 223:368–376

    Article  CAS  PubMed  Google Scholar 

  41. Hill J et al (2020) Optimization of oxygen dynamics, UV‑A delivery, and drug formulation for accelerated Epi-on corneal crosslinking. Curr Eye Res 45(4):450–458

    Article  CAS  PubMed  Google Scholar 

  42. El Hout S et al (2019) Transepithelial photorefractive intrastromal corneal crosslinking versus photorefractive keratectomy in low myopia. J Cataract Refract Surg 45(4):427–436

    Article  PubMed  Google Scholar 

  43. Matthys A et al (2021) Transepithelial corneal cross-linking with supplemental oxygen in keratoconus: 1‑year clinical results. J Refract Surg 37(1):42–48

    Article  PubMed  Google Scholar 

  44. Mazzotta C et al (2020) Customized corneal crosslinking for treatment of progressive keratoconus: clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J Cataract Refract Surg 46(12):1582–1587

    Article  PubMed  Google Scholar 

  45. Kamiya K et al (2020) Visual and topographic improvement with epithelium-on, oxygen-supplemented, customized corneal cross-linking for progressive keratoconus. J Clin Med 9(10):3222. https://doi.org/10.3390/jcm9103222

  46. Aydin E, Aslan MG (2021) The efficiency and safety of oxygen-supplemented accelerated transepithelial corneal cross-linking. Int Ophthalmol 41(9):2993–3005

  47. Koller T et al (2006) Topography-guided surface ablation for forme fruste keratoconus. Ophthalmology 113(12):2198–2202

    Article  PubMed  Google Scholar 

  48. Zhu AY, Jun AS, Soiberman US (2019) Combined protocols for corneal collagen cross-linking with Photorefractive surgery for refractive management of keratoconus: update on techniques and review of literature. Ophthalmol Ther 8(Suppl 1):15–31

    Article  PubMed  PubMed Central  Google Scholar 

  49. Noor IH et al (2018) Continued long-term flattening after corneal cross-linking for keratoconus. J Refract Surg 34(8):567–570

    Article  PubMed  Google Scholar 

  50. Moraes RLB et al (2019) Haze and visual acuity loss after sequential photorefractive keratectomy and corneal cross-linking for keratoconus. J Refract Surg 35(2):109–114

    Article  PubMed  Google Scholar 

  51. Gore DM et al (2018) Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus. J Cataract Refract Surg 44(5):571–580

    Article  PubMed  Google Scholar 

  52. Nattis AS, Rosenberg ED, Donnenfeld ED (2020) One-year visual and astigmatic outcomes of keratoconus patients following sequential crosslinking and topography-guided surface ablation: the TOPOLINK study. J Cataract Refract Surg 46(4):507–516

    Article  PubMed  Google Scholar 

  53. Singal N et al (2020) Comparison of accelerated CXL alone, accelerated CXL-ICRS, and accelerated CXL-TG-PRK in progressive keratoconus and other corneal ectasias. J Cataract Refract Surg 46(2):276–286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. Seiler FEBO.

Ethics declarations

Interessenkonflikt

T.G. Seiler ist wissenschaftlicher Berater für Avedro/Glaukos und erhält Forschungsunterstützung. K. Borgardts, J. Menzel-Severing und G. Geerling geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgardts, K., Menzel-Severing, J., Geerling, G. et al. Indikationsstellung zum Crosslinking und klinische Ergebnisse neuer kornealer Crosslinking-Techniken. Ophthalmologe 119, 350–357 (2022). https://doi.org/10.1007/s00347-022-01579-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-022-01579-6

Schlüsselwörter

Keywords

Navigation