Skip to main content
Log in

Smartphone-basierte Fundusfotografie: Anwendungen und Adapter

Smartphone-based fundus imaging: applications and adapters

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Smartphone-basierte Fundusfotografie (SBF) stellt eine innovative und kostengünstige Möglichkeit zur Bildgebung des Augenhintergrundes dar. Seit den ersten Anwendungsberichten von vor über 10 Jahren wurde eine Vielzahl an Studien zu unterschiedlichen Adaptern und klinischen Anwendungen publiziert.

Ziel der Arbeit

Ziel dieser Arbeit ist es, einen Überblick zur Entwicklung der SBF, zu bisherigen Anwendungsbereichen und Adaptern zu geben.

Material und Methoden

Es wurde eine Literaturrecherche in den Datenbanken MEDLINE und Science Citation Index Expanded ohne zeitliche Einschränkung durchgeführt.

Ergebnisse

Elf Adapter wurden eingeschlossen und hinsichtlich beispielhaftem Bildmaterial, dargestellten Fundusbereich, Anschaffungskosten, Gewicht, Software, Anwendungsbereich, Smartphone-Kompatibilität und Zertifizierung verglichen. Bislang publizierte Anwendungsbereiche der SBF sind das Screening auf diabetische Retinopathie, Glaukom und Frühgeborenenretinopathie sowie ein Einsatz in der Notfallmedizin, Pädiatrie und medizinischen Lehre. Die Bildqualität konventioneller Geräte ist der SBF im Allgemeinen überlegen. Erste Ansätze zur automatischen Detektion diabetischer Retinopathie auf Smartphone-basierten Fundusbildern sind vielversprechend. Der Einsatz automatischer Bildverarbeitungsalgorithmen ermöglicht die Erstellung von Weitwinkelaufnahmen.

Diskussion

Die SBF ist eine vielseitig einsetzbare, mobile und kostengünstige Alternative zu konventionellen Geräten für die Fundusfotografie. Darüber hinaus eignet sie sich im Rahmen telemedizinischer Ansätze zur Delegation einfacher ophthalmologischer Untersuchungen an Hilfspersonal und könnte zur Vereinfachung von Befunddokumentation, Verbesserung der Lehre und v. a. in Ländern mit niedrigem/mittlerem Einkommen zur Verbesserung der augenärztlichen Versorgung beitragen.

Abstract

Background

Smartphone-based fundus imaging (SBFI) is an innovative and low-cost alternative for color fundus photography. Since the first reports on this topic more than 10 years ago a large number of studies on different adapters and clinical applications have been published.

Objective

The aim of this review article is to provide an overview on the development of SBFI and adapters and clinical applications published so far.

Material and methods

A literature search was performed using the MEDLINE and Science Citation Index Expanded databases without time restrictions.

Results

Overall, 11 adapters were included and compared in terms of exemplary image material, field of view, acquisition costs, weight, software, application range, smartphone compatibility and certification. Previously published SBFI applications are screening for diabetic retinopathy, glaucoma and retinopathy of prematurity as well as the application in emergency medicine, pediatrics and medical education/teaching. Image quality of conventional retinal cameras is in general superior to SBFI. First approaches on automatic detection of diabetic retinopathy through SBFI are promising and the use of automatic image processing algorithms enables the generation of wide-field image montages.

Conclusion

SBFI is a versatile, mobile, low-cost alternative to conventional equipment for color fundus photography. In addition, it facilitates the delegation of ophthalmological examinations to assistance personnel in telemedical settings, could simplify retinal documentation, improve teaching, and improve ophthalmological care, particularly in countries with low and middle incomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Abràmoff MD, Lavin PT, Birch M et al (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 1:39

    PubMed  PubMed Central  Google Scholar 

  2. Bastawrous A (2012) Smartphone fundoscopy. Ophthalmology 119:432–433.e2

    PubMed  Google Scholar 

  3. Bastawrous A, Giardini ME, Bolster NM et al (2016) Clinical validation of a smartphone-based adapter for optic disc imaging in Kenya. JAMA Ophthalmol 134:151–158

    PubMed  PubMed Central  Google Scholar 

  4. Bilong Y, Domngang CN, Nwanlih Gimma G et al (2020) Smartphone-assisted glaucoma screening in patients with type 2 diabetes: a pilot study. Med Hypothesis Discov Innov Ophthalmol 9:61–65

    PubMed  PubMed Central  Google Scholar 

  5. Bilong Y, Katte JC, Koki G et al (2019) Validation of smartphone-based retinal photography for diabetic retinopathy screening. Ophthalmic Surg Lasers Imaging Retina 50:S18–s22

    PubMed  Google Scholar 

  6. Bolster NM, Giardini ME, Livingstone IA et al (2014) How the smartphone is driving the eye-health imaging revolution. Expert Rev Ophthalmol 9:475–485

    CAS  Google Scholar 

  7. Brown JM, Campbell JP, Beers A et al (2018) Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol 136:803–810

    PubMed  PubMed Central  Google Scholar 

  8. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    PubMed  Google Scholar 

  9. Collon S, Chang D, Tabin G et al (2020) Utility and feasibility of teleophthalmology using a smartphone-based ophthalmic camera in screening camps in Nepal. Asia Pac J Ophthalmol (Phila) 9:54–58

    Google Scholar 

  10. Day LM, Wang SX, Huang CJ (2017) Nonmydriatic fundoscopic imaging using the pan optic iexaminer system in the pediatric emergency department. Acad Emerg Med 24:587–594

    PubMed  Google Scholar 

  11. Gilbert C (2008) Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev 84:77–82

    PubMed  Google Scholar 

  12. Gilbert C, Fielder A, Gordillo L et al (2005) Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs. Pediatrics 115:e518–e525

    PubMed  Google Scholar 

  13. Goyal A, Gopalakrishnan M, Anantharaman G et al (2019) Smartphone guided wide-field imaging for retinopathy of prematurity in neonatal intensive care unit—a smart ROP (SROP) initiative. Indian J Ophthalmol 67:840–845

    PubMed  PubMed Central  Google Scholar 

  14. Haddock LJ, Kim DY, Mukai S (2013) Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. https://doi.org/10.1155/2013/518479

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hakimi AA, Lalehzarian SP, Lalehzarian AS et al (2019) The utility of a smartphone-enabled ophthalmoscope in pre-clinical fundoscopy training. Acta Ophthalmol 97(2):e327–e328

    PubMed  Google Scholar 

  16. Hartnett ME (2017) Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 62:257–276

    PubMed  Google Scholar 

  17. Hellström A, Smith LEH, Dammann O (2013) Retinopathy of prematurity. Lancet 382:1445–1457

    PubMed  PubMed Central  Google Scholar 

  18. International Diabetes Federation (2017) The diabetic retinopathy barometer report: global findings

    Google Scholar 

  19. Jansen LG, Shah P, Wabbels B, Holz FG, Finger RP, Wintergerst MWM (2021) Learning curve evaluation upskilling retinal imaging using smartphones. Sci Rep 11(1):12691. https://doi.org/10.1038/s41598-021-92232-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanagasingam Y, Bhuiyan A, Abràmoff MD et al (2014) Progress on retinal image analysis for age related macular degeneration. Prog Retin Eye Res 38:20–42

    PubMed  Google Scholar 

  21. Karakaya M, Hacisoftaoglu RE (2020) Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning. BMC Bioinformatics 21:259

    PubMed  PubMed Central  Google Scholar 

  22. Kim TN, Myers F, Reber C et al (2018) A smartphone-based tool for rapid, portable, and automated wide-field retinal imaging. Transl Vis Sci Technol 7:21

    PubMed  PubMed Central  Google Scholar 

  23. Kim Y, Chao DL (2019) Comparison of smartphone ophthalmoscopy vs conventional direct ophthalmoscopy as a teaching tool for medical students: the COSMOS study. Clin Ophthalmol 13:391–401

    PubMed  PubMed Central  Google Scholar 

  24. Krieger B, Hallik R, Kala K et al (2020) Validation of mobile-based funduscope for diabetic retinopathy screening in Estonia. Eur J Ophthalmol. https://doi.org/10.1177/1120672120972027

    Article  PubMed  Google Scholar 

  25. Lekha T, Ramesh S, Sharma A et al (2019) MII RetCam assisted smartphone based fundus imaging for retinopathy of prematurity. Indian J Ophthalmol 67:834–839

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin DY, Blumenkranz MS, Brothers RJ et al (2002) The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol 134:204–213

    PubMed  Google Scholar 

  27. Lin S‑J, Yang C‑M, Yeh P‑T et al (2014) Smartphone fundoscopy for retinopathy of prematurity. Taiwan J Ophthalmol 4:82–85

    Google Scholar 

  28. Lodhia V, Karanja S, Lees S et al (2016) Acceptability, usability, and views on deployment of peek, a mobile phone mhealth intervention for eye care in Kenya: qualitative study. JMIR mHealth uHealth 4:e30

    PubMed  PubMed Central  Google Scholar 

  29. Lord RK, Shah VA, Filippo ANS et al (2010) Novel uses of smartphones in ophthalmology. Ophthalmology 117:1274–U1303

    PubMed  Google Scholar 

  30. Ludwig CA, Murthy SI, Pappuru RR et al (2016) A novel smartphone ophthalmic imaging adapter: user feasibility studies in Hyderabad, India. Indian J Ophthalmol 64:191–200

    PubMed  PubMed Central  Google Scholar 

  31. Ludwig CA, Perera C, Myung D et al (2020) Automatic identification of referral-warranted diabetic retinopathy using deep learning on mobile phone images. Transl Vis Sci Technol 9:60

    PubMed  PubMed Central  Google Scholar 

  32. Maamari RN, Keenan JD, Fletcher DA et al (2014) A mobile phone-based retinal camera for portable wide field imaging. Br J Ophthalmol 98:438–441

    PubMed  Google Scholar 

  33. Mamtora S, Sandinha MT, Ajith A et al (2018) Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye (Lond) 32(11):1766–1771. https://doi.org/10.1038/s41433-018-0177-1

    Article  Google Scholar 

  34. Micheletti JM, Hendrick AM, Khan FN et al (2016) Current and next generation portable screening devices for diabetic retinopathy. J Diabetes Sci Technol 10:295–300

    PubMed  PubMed Central  Google Scholar 

  35. Mowatt G, Burr JM, Cook JA et al (2008) Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. Invest Ophthalmol Vis Sci 49:5373–5385

    PubMed  Google Scholar 

  36. Mueller S, Karpova S, Wintergerst M et al (2020) Automated detection of diabetic retinopathy from smartphone fundus videos. MICCAI workshop on ophthalmic medical image analysis, S 83–92

    Google Scholar 

  37. Muiesan ML, Salvetti M, Paini A et al (2017) Ocular fundus photography with a smartphone device in acute hypertension. J Hypertens 35:1660–1665

    CAS  PubMed  Google Scholar 

  38. Natarajan S, Jain A, Krishnan R et al (2019) Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol 137(10):1182–1188. https://doi.org/10.1001/jamaophthalmol.2019.2923

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oluleye TS, Rotimi-Samuel A, Adenekan A (2016) Mobile phones for retinopathy of prematurity screening in Lagos, Nigeria, sub-Saharan Africa. Eur J Ophthalmol 26:92–94

    PubMed  Google Scholar 

  40. Patel TP, Aaberg MT, Paulus YM et al (2019) Smartphone-based fundus photography for screening of plus-disease retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 257(11):2579–2585. https://doi.org/10.1007/s00417-019-04470-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patel TP, Kim TN, Yu G et al (2019) Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases. Transl Vis Sci Technol 8:29

    PubMed  PubMed Central  Google Scholar 

  42. Prathiba V, Rajalakshmi R, Arulmalar S et al (2020) Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy. Indian J Ophthalmol 68:S42–S46

    PubMed  PubMed Central  Google Scholar 

  43. Rachapelle S, Legood R, Alavi Y et al (2013) The cost-utility of telemedicine to screen for diabetic retinopathy in India. Ophthalmology 120:566–573

    PubMed  Google Scholar 

  44. Rajalakshmi R, Arulmalar S, Usha M et al (2015) Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS ONE 10(9):e138285

    PubMed  PubMed Central  Google Scholar 

  45. Rajalakshmi R, Subashini R, Anjana RM et al (2018) Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye (Lond) 32(6):1138–1144. https://doi.org/10.1038/s41433-018-0064-9

    Article  Google Scholar 

  46. Raju B, Raju NSD, Akkara JD et al (2019) Smartphone-based fundus documentation in retinopathy of prematurity. Indian J Ophthalmol 67:1909

    PubMed  PubMed Central  Google Scholar 

  47. Redd TK, Campbell JP, Brown JM et al (2018) Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-313156

    Article  PubMed  Google Scholar 

  48. Russo A, Mapham W, Turano R et al (2016) Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J Glaucoma 25:e777–781

    PubMed  Google Scholar 

  49. Russo A, Morescalch F, Costagliola C et al (2015) Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. Am J Ophthalmol 159:360–364

    PubMed  Google Scholar 

  50. Russo A, Morescalchi F, Costagliola C et al (2015) A novel device to exploit the smartphone camera for fundus photography. J Ophthalmol 2015:823139–823139

    PubMed  PubMed Central  Google Scholar 

  51. Ruta LM, Magliano DJ, Lemesurier R et al (2013) Prevalence of diabetic retinopathy in type 2 diabetes in developing and developed countries. Diabet Med 30:387–398

    CAS  PubMed  Google Scholar 

  52. Ryan ME, Rajalakshmi R, Prathiba V et al (2015) Comparison among methods of retinopathy assessment (CAMRA) study smartphone, nonmydriatic, and mydriatic photography. Ophthalmology 122:2038–2043

    PubMed  Google Scholar 

  53. Sengupta S, Sindal MD, Baskaran P et al (2019) Sensitivity and specificity of smartphone-based retinal imaging for diabetic retinopathy: a comparative study. Ophthalmol Retina 3:146–153

    PubMed  Google Scholar 

  54. Shanmugam MP, Mishra DKC, Madhukumar R et al (2014) Fundus imaging with a mobile phone: a review of techniques. Indian J Ophthalmol 62:960–962

    PubMed  PubMed Central  Google Scholar 

  55. Sharma A, Goyal A, Bilong Y et al (2019) Comparison of a smartphone-based photography method with indirect ophthalmoscopic assessment in referable retinopathy of prematurity: a smart retinopathy of prematurity model pilot study. Ophthalmology. https://doi.org/10.1016/j.oret.2019.06.006

    Article  PubMed  Google Scholar 

  56. Sharma A, Subramaniam SD, Ramachandran KI et al (2016) Smartphone-based fundus camera device (MII Ret Cam) and technique with ability to image peripheral retina. Eur J Ophthalmol 26:142–144

    CAS  PubMed  Google Scholar 

  57. Sosale B, Sosale AR, Murthy H et al (2020) Medios—an offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J Ophthalmol 68:391–395

    PubMed  PubMed Central  Google Scholar 

  58. Toslak D, Thapa D, Chen Y et al (2016) Trans-palpebral illumination: an approach for wide-angle fundus photography without the need for pupil dilation. Opt Lett 41:2688–2691

    PubMed  PubMed Central  Google Scholar 

  59. Toy BC, Myung DJ, He L et al (2016) Smartphone-based dilated fundus photography and near visual acuity testing as inexpensive screening tools to detect referral warranted diabetic eye disease. Retina 36:1000–1008

    PubMed  Google Scholar 

  60. United Nations (2012) Born too soon. The global action report on preterm birth.

  61. Varma R, Lee PP, Goldberg I et al (2011) An assessment of the health and economic burdens of glaucoma. Am J Ophthalmol 152:515–522

    PubMed  PubMed Central  Google Scholar 

  62. Williams GA, Scott IU, Haller JA et al (2004) Single-field fundus photography for diabetic retinopathy screening: a report by the American academy of ophthalmology. Ophthalmology 111:1055–1062

    PubMed  Google Scholar 

  63. Wintergerst MWM, Brinkmann CK, Holz FG et al (2018) Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Sci Rep 8:10228

    PubMed  PubMed Central  Google Scholar 

  64. Wintergerst MWM, Petrak M, Li JQ et al (2019) Non-contact smartphone-based fundus imaging compared to conventional fundus imaging: a low-cost alternative for retinopathy of prematurity screening and documentation. Sci Rep 9:19711

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wintergerst MWM, Jansen LG, Holz FG et al (2020) A novel device for smartphone-based fundus imaging and documentation in clinical practice: comparative image analysis study. JMIR Mhealth Uhealth 8:e17480

    PubMed  PubMed Central  Google Scholar 

  66. Wintergerst MWM, Jansen LG, Holz FG et al (2020) Smartphone-based fundus imaging-where are we now? Asia Pac J Ophthalmol (Phila) 9:308–314

    Google Scholar 

  67. Wintergerst MWM, Mishra DK, Hartmann L et al (2020) Diabetic retinopathy screening using smartphone-based fundus imaging in India. Ophthalmology 127:1529–1538

    PubMed  Google Scholar 

  68. World Health Organization (2016) Global report on diabetes

    Google Scholar 

  69. Xu X, Ding W, Wang X et al (2016) Smartphone-based accurate analysis of retinal vasculature towards point-of-care diagnostics. Sci Rep. https://doi.org/10.1038/srep34603

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564

    PubMed  PubMed Central  Google Scholar 

Download references

Förderung

Finanzielle Unterstützung wurde von der Else Kröner Fresenius Stiftung/German Scholars Organization (Förder-Nr. EKFS/GSO 16 an RPF) und von dem BONFOR GEROK Program, Medizinische Fakultät, Universität Bonn (Förder-Nr. O‑137.0028 an MWMW) zur Verfügung gestellt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian W. M. Wintergerst.

Ethics declarations

Interessenkonflikt

L.G. Jansen: finanzielle Förderung: Deutsche Ophthalmologische Gesellschaft (DOG); Reisekostenförderung: Gesellschaft für internationale Zusammenarbeit (GIZ). F.G. Holz: finanzielle Förderung: Acucela, Allergan, Apellis, Bayer, Bioeq/Formycon, Roche/Genentech, Geucer, Heidelberg Engineering, iVericBio, Kanghong, Novartis, Zeiss; Beratertätigkeit: Boehringer-Ingelheim, Grayburg Vision, Lin BioScience, Pixum Vision, Stealth BioTherapeutics, Aerie, Oxuxrion. M.W.M. Wintergerst: finanzielle Förderung: BONFOR GEROK Program, Faculty of Medicine, University of Bonn (Förder-Nr. O‑137.0028), Else Kröner-Fresenius Stiftung, Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ), CenterVue SpA, Berlin-Chemie AG, Deutsche Ophthalmologische Gesellschaft (DOG), Heine Optotechnik GmbH; Beratertätigkeit: Heine Optotechnik GmbH; Honorare für Referententätigkeit: ASKIN & CO GmbH, Heine Optotechnik GmbH; Reisekostenförderung: ASKIN & CO GmbH, Berlin-Chemie AG, DigiSight Technologies, Heine Optotechnik GmbH, European Society of Retina Specialists (EURETINA), Deutscher Akademischer Austauschdienst (DAAD), Association for Research in Vision and Ophthalmology (ARVO); kostenlose zur Verfügungstellung von Material/Dienstleistungen: Heidelberg Engineering, Optos, Carl Zeiss Meditec, CenterVue SpA, D‑Eye Srl, Heine Optotechnik GmbH, Eyenuk, Inc. T. Schultz und R.P. Finger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, L.G., Schultz, T., Holz, F.G. et al. Smartphone-basierte Fundusfotografie: Anwendungen und Adapter. Ophthalmologe 119, 112–126 (2022). https://doi.org/10.1007/s00347-021-01536-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-021-01536-9

Schlüsselwörter

Keywords

Navigation