Skip to main content
Log in

Einfluss von ultravioletter Strahlung auf die Netzhaut

Impact of ultraviolet radiation on the retina

Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Licht spielt für den Sehvorgang eine entscheidende Rolle. Für die nicht sichtbare Strahlung im kurzwelligen Spektrum gibt es natürliche Mechanismen, die die Netzhaut des Menschen vor schädigender ultravioletter (UV-)Strahlung schützt. Auch hier macht die Dosis (Energie) das Gift. Durch UV-Strahlung bedingte Schädigungen betreffen v. a. die äußere Netzhaut, insbesondere die Photorezeptoren und das retinale Pigmentepithel. Während es bis zum 20. Lebensjahr noch zu einem potenziellen Netzhauschaden aufgrund einer erhöhten UV-Strahlenexposition kommen kann, ist im Erwachsenenalter aufgrund abnehmender Transmissionseigenschaften der natürlichen Linse von praktisch keiner nennenswerten Exposition der Netzhaut gegenüber UV-Strahlen mehr auszugehen. Sowohl die natürliche Linse, moderne Intraokularlinsen als auch das Tragen von Sonnenbrillen mit entsprechender Filterfunktion, insbesondere im Kindes- und Jugendalter, sorgen für eine relevante Reduktion der UV-Strahlenbelastung der Netzhaut.

Abstract

Light has a crucial role in the visual process. For nonvisible radiation in the short-wave spectrum, there are natural mechanisms that protect the human retina from damaging ultraviolet (UV) radiation. Here, the dose (= energy) makes the poison. Damage caused by UV light mainly affects the outer retina, particularly the photoreceptors and the retinal pigment epithelium. While retinal damage due to increased UV radiation exposure can potentially still occur up to the age of 20, in adulthood, exposure of the retina to UV radiation can no longer be assumed, due to decreasing transmission properties of the natural lens. The natural lens, modern intraocular lenses, and wearing of sunglasses with appropriate filter function, particularly in childhood and adolescence, provide a relevant reduction in UV radiation exposure of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D, Koutalos Y, Schey KL, Hanneken A, Crouch RK (2013) Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 54(8):5535–5542. https://doi.org/10.1167/iovs.13-12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Viénot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel J‑A, Picaud S (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS One 8(8):e71398. https://doi.org/10.1371/journal.pone.0071398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artigas JM, Felipe A, Navea A, Fandiño A, Artigas C (2012) Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light. Invest Ophthalmol Vis Sci 53(7):4076–4084. https://doi.org/10.1167/iovs.12-9471

    Article  PubMed  Google Scholar 

  4. Atmaca LS, Idil A, Can D (1995) Early and late visual prognosis in solar retinopathy. Graefes Arch Clin Exp Ophthalmol 233(12):801–804. https://doi.org/10.1007/BF00184094

    Article  CAS  PubMed  Google Scholar 

  5. Begaj T, Schaal S (2018) Sunlight and ultraviolet radiation-pertinent retinal implications and current management. Surv Ophthalmol 63(2):174–192. https://doi.org/10.1016/j.survophthal.2017.09.002

    Article  PubMed  Google Scholar 

  6. Bermond K, Wobbe C, Tarau I‑S, Heintzmann R, Hillenkamp J, Curcio CA, Sloan KR, Ach T (2020) Autofluorescent granules of the human retinal pigment epithelium: phenotypes, intracellular distribution, and age-related topography. Invest Ophthalmol Vis Sci 61(5):35. https://doi.org/10.1167/iovs.61.5.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Birdsong O, Ling J, El-Annan J (2016) Solar retinopathy. Ophthalmology 123(3):570. https://doi.org/10.1016/j.ophtha.2016.01.003

    Article  PubMed  Google Scholar 

  8. Brenner, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bundesamt für Strahlenschutz (2020) Optische Strahlung. https://www.bfs.de/DE/themen/opt/uv/uv-ozon/uv-ozon_node.html. Zugegriffen: 8. Sept. 2021

  10. Gabel V‑P, Birngruber R, Gunther-Koszka H, Puliafito CA (1989) Nd:YAG laser photodisruption of hemorrhagic detachment of the internal limiting membrane. Am J Ophthalmol 107(1):33–37. https://doi.org/10.1016/0002-9394(89)90811-8

    Article  CAS  PubMed  Google Scholar 

  11. Garg SJ, Martidis A, Nelson ML, Sivalingam A (2004) Optical coherence tomography of chronic solar retinopathy. Am J Ophthalmol 137(2):351–354. https://doi.org/10.1016/S0002-9394(03)00876-6

    Article  PubMed  Google Scholar 

  12. Glickman RD (2002) Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 21(6):473–490. https://doi.org/10.1080/10915810290169909

    Article  CAS  PubMed  Google Scholar 

  13. Grey AC, Crouch RK, Koutalos Y, Schey KL, Ablonczy Z (2011) Spatial localization of A2E in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 52(7):3926–3933. https://doi.org/10.1167/iovs.10-7020

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grimm C, Wenzel A, Hafezi F, Yu S, Redmond TM, Remé CE (2000) Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nat Genet 25(1):63–66. https://doi.org/10.1038/75614

    Article  CAS  PubMed  Google Scholar 

  15. Ham WT, Mueller HA, Goldman AI, Newnam BE, Holland LM, Kuwabara T (1974) Ocular hazard from picosecond pulses of Nd: YAG laser radiation. Science 185(4148):362–363. https://doi.org/10.1126/science.185.4148.362

    Article  PubMed  Google Scholar 

  16. Ham WT, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature 260(5547):153–155. https://doi.org/10.1038/260153a0

    Article  PubMed  Google Scholar 

  17. Ham WT, Mueller HA, Ruffolo JJ, Guerry D, Guerry RK (1982) Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 93(3):299–306. https://doi.org/10.1016/0002-9394(82)90529-3

    Article  PubMed  Google Scholar 

  18. Höh AE, Ach T, Amberger R, Dithmar S (2008) Lichtexposition bei vitreoretinaler Chirurgie. I. Grundlagen. Ophthalmologe 105(10):898–904. https://doi.org/10.1007/s00347-008-1794-z

    Article  PubMed  Google Scholar 

  19. Hope-Ross MW, Mahon GJ, Gardiner TA, Archer DB (1993) Ultrastructural findings in solar retinopathy. Eye (Lond) 7(1):29–33. https://doi.org/10.1038/eye.1993.7

    Article  Google Scholar 

  20. ISO (2021) ISO/TR 20772:2018(en), ophthalmic optics—spectacle lenses—short wavelength visible solar radiation and the eye. https://www.iso.org/obp/ui/#iso:std:iso:tr:20772:ed-1:v1:en. Zugegriffen: 9. Aug. 2021

  21. Ivanov IV, Mappes T, Schaupp P, Lappe C, Wahl S (2018) Ultraviolet radiation oxidative stress affects eye health. J Biophotonics 11(7):e201700377. https://doi.org/10.1002/jbio.201700377

    Article  PubMed  Google Scholar 

  22. Jain A, Desai RU, Charalel RA, Quiram P, Yannuzzi L, Sarraf D (2009) Solar retinopathy: comparison of optical coherence tomography (OCT) and fluorescein angiography (FA). Retina 29(9):1340–1345. https://doi.org/10.1097/IAE.0b013e3181b0da88

    Article  PubMed  Google Scholar 

  23. Khachik F, Bernstein PS, Garland DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci 38(9):1802–1811

    CAS  PubMed  Google Scholar 

  24. Lawwill T, Crockett S, Currier G (1977) Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Doc Ophthalmol 44(2):379–402. https://doi.org/10.1007/BF00230089

    Article  CAS  PubMed  Google Scholar 

  25. Li ZL, Tso MO, Jampol LM, Miller SA, Waxler M (1990) Retinal injury induced by near-ultraviolet radiation in aphakic and pseudophakic monkey eyes. A preliminary report. Retina 10(4):301–314. https://doi.org/10.1097/00006982-199010000-00014

    Article  CAS  PubMed  Google Scholar 

  26. Lucas RM, McMichael AJ, Armstrong BK, Smith WT (2008) Estimating the global disease burden due to ultraviolet radiation exposure. Int J Epidemiol 37(3):654–667. https://doi.org/10.1093/ije/dyn017

    Article  PubMed  Google Scholar 

  27. Mauget-Faÿsse M, Quaranta M, Francoz N, BenEzra D, Mauget-Fa M (2001) Incidental retinal phototoxicity associated with ingestion of photosensitizing drugs. Graefes Arch Clin Exp Ophthalmol 239(7):501–508. https://doi.org/10.1007/s004170100307

    Article  PubMed  Google Scholar 

  28. Nociari MM (2017) Lipofuscin accumulation into and clearance from retinal pigment epithelium lysosomes: physiopathology and emerging therapeutics. Lysosomes: associated diseases and methods to study their function

    Google Scholar 

  29. Nociari MM, Kiss S, Rodriguez-Boulan E (2017) Lipofuscin accumulation into and clearance from retinal pigment epithelium lysosomes: physiopathology and emerging therapeutics. In: Sharma PD (Hrsg) Lysosomes - associated diseases and methods to study their function

    Google Scholar 

  30. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol Vis Sci 5(5):450–473

    CAS  Google Scholar 

  31. Pollreisz A, Neschi M, Sloan KR, Pircher M, Mittermueller T, Dacey DM, Schmidt-Erfurth U, Curcio CA (2020) Atlas of human retinal pigment epithelium organelles significant for clinical imaging. Invest Ophthalmol Vis Sci 61(8):13. https://doi.org/10.1167/iovs.61.8.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poornachandra B, Bhanushali D, Akkali MC, Jayadev C, Singh V, Gadde SGK, Yadav NK (2021) Solar retinopathy-correlation between adaptive optics and spectral domain optical coherence tomography with visual acuity. Graefes Arch Clin Exp Ophthalmol 259(5):1161–1166. https://doi.org/10.1007/s00417-020-04961-9

    Article  CAS  PubMed  Google Scholar 

  33. Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41(5):1200–1209

    CAS  PubMed  Google Scholar 

  34. Raymond LA (1995) Neodymium:YAG laser treatment for hemorrhages under the internal limiting membrane and posterior hyaloid face in the macula. Ophthalmology 102(3):406–411. https://doi.org/10.1016/s0161-6420(95)31008-1

    Article  CAS  PubMed  Google Scholar 

  35. The International Commission on Non-Ionizing Radiation Protection (2004) Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys 87(2):171–186. https://doi.org/10.1097/00004032-200408000-00006

    Article  Google Scholar 

  36. Tso MO, La Piana FG (1975) The human fovea after sungazing. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 79(6):OP788–95

    CAS  PubMed  Google Scholar 

  37. VOS JJ (1962) A theory of retinal burns. Bull Math Biophys 24:115–128. https://doi.org/10.1007/BF02477421

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82(2):474–479. https://doi.org/10.1562/2005-10-21-RA-725

    Article  CAS  PubMed  Google Scholar 

  39. Weiter JJ, Delori FC, Wing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2):145–152

    CAS  PubMed  Google Scholar 

  40. Wu J, Seregard S, Algvere PV (2006) Photochemical damage of the retina. Surv Ophthalmol 51(5):461–481. https://doi.org/10.1016/j.survophthal.2006.06.009

    Article  PubMed  Google Scholar 

  41. Zrenner E (1990) Lichtinduzierte Schäden am Auge. Fortschr Ophthalmol 87:S41–51

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ach FEBO MSc.

Ethics declarations

Interessenkonflikt

M. Saßmannshausen und T. Ach geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saßmannshausen, M., Ach, T. Einfluss von ultravioletter Strahlung auf die Netzhaut. Ophthalmologe 119, 240–247 (2022). https://doi.org/10.1007/s00347-021-01506-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-021-01506-1

Schlüsselwörter

Keywords

Navigation