Skip to main content

Präkonditionierung von vaskularisierten Hochrisikoaugen mittels Feinnadeldiathermie und Crosslinking

Preconditioning of vascularized high-risk eyes using fine-needle diathermy and cross-linking

Zusammenfassung

Hintergrund

Das Risiko der Abstoßung und des Transplantatversagens nach Hochrisikokeratoplastik steigt mit Zunahme der kornealen Neovaskularisation. Die medikamentöse und physikalische Regression der kornealen Neovaskularisation vor Keratoplastik bietet möglicherweise das Potenzial, das Risiko einer Abstoßung nach anschließender Hochrisikokeratoplastik zu reduzieren.

Ziel der Arbeit

Die vorliegende Arbeit gibt eine Literaturübersicht hinsichtlich der Präkonditionierung von vaskularisierten Hochrisikoaugen mittels Feinnadeldiathermie und kornealem Crosslinking vor Hochrisikokeratoplastik („lymphangioregressive Präkonditionierung“).

Methoden

Es erfolgen eine Literaturrecherche via PubMed sowie eine Zusammenfassung eigener Daten.

Ergebnis

Tierexperimentelle Studien zeigen, dass sowohl die Feinnadeldiathermie als auch das korneale Crosslinking zu einer Regression der kornealen Neovaskularisation führen und das Transplantatüberleben nach anschließender Hochrisikokeratoplastik verlängern. Untersuchungen aus unserem Institut geben darüber hinaus erste Hinweise, dass beide Verfahren auch in der klinischen Praxis zur Reduktion der kornealen Neovaskularisation führen und damit potenziell das Abstoßungsrisiko reduzieren.

Diskussion

Die Feinnadeldiathermie und das korneale Crosslinking bieten effektive Therapieansätze zur angioregressiven Behandlung und scheinen das Transplantatüberleben nach Hochrisikokeratoplastik zu verlängern. Größer angelegte prospektive und kontrollierte klinische Studien sind notwendig, um diese vielversprechenden Therapieansätze weitergehend zu untersuchen.

Abstract

Background

The risk of allograft rejection following high-risk keratoplasty increases with the area of corneal neovascularization. Pharmaceutical and physical regression of corneal neovascularization before keratoplasty may offer the potential to reduce the risk of graft rejection after high-risk keratoplasty.

Objective

This article provides a review of the literature on the preconditioning of vascularized high-risk eyes using fine-needle diathermy and corneal cross-linking (preoperative preconditioning by lymphangioregression).

Methods

A literature search was carried out in PubMed and a summary of own data is presented.

Results

Animal experimental studies showed that both fine-needle diathermy and corneal cross-linking lead to a regression of corneal neovascularization and prolong graft survival after high-risk keratoplasty. Furthermore, studies from our institute provide first evidence that both procedures also lead to a reduction of corneal neovascularization in the clinical practice and thus potentially reduce the risk of allograft rejection after subsequent high-risk keratoplasty.

Discussion

Fine-needle diathermy and corneal cross-linking provide effective therapeutic approaches for angioregressive treatment and seem to prolong graft survival following high-risk keratoplasty. Larger prospective and controlled clinical trials are needed to further investigate these promising therapeutic approaches.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Cursiefen C (2007) Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy 92:50–57

    CAS  Article  Google Scholar 

  2. 2.

    Hos D, Matthaei M, Bock F et al (2019) Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 73:100768

    CAS  Article  Google Scholar 

  3. 3.

    Bock F, Maruyama K, Regenfuss B et al (2013) Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res 34:89–124

    CAS  Article  Google Scholar 

  4. 4.

    Bachmann B, Taylor RS, Cursiefen C (2013) The association between corneal neovascularization and visual acuity: a systematic review. Acta Ophthalmol 91(1):12–19

    Article  Google Scholar 

  5. 5.

    Nguyen NX, Seitz B, Martus P, Langenbucher A, Cursiefen C (2007) Long-term topical steroid treatment improves graft survival following normal-risk penetrating keratoplasty. Am J Ophthalmol 144(2):318–319

    CAS  Article  Google Scholar 

  6. 6.

    Alldredge OC, Krachmer JH (1981) Clinical types of corneal transplant rejection. Their manifestations, frequency, preoperative correlates, and treatment. Arch Ophthalmol 99(4):599–604

    CAS  Article  Google Scholar 

  7. 7.

    Price MO, Thompson RW Jr., Price FW Jr. (2003) Risk factors for various causes of failure in initial corneal grafts. Arch Ophthalmol 121(8):1087–1092

    Article  Google Scholar 

  8. 8.

    Sellami D, Abid S, Bouaouaja G et al (2007) Epidemiology and risk factors for corneal graft rejection. Transplant Proc 39(8):2609–2611

    CAS  Article  Google Scholar 

  9. 9.

    Hos D, Le VNH, Hellmich M et al (2019) Risk of corneal graft rejection after high-risk keratoplasty following fine-needle vessel coagulation of corneal neovascularization combined with Bevacizumab: a pilot study. Transplant Direct 5(5):e452

    Article  Google Scholar 

  10. 10.

    Bachmann B, Taylor RS, Cursiefen C (2010) Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology 117(7):1300–1305e7

    Article  Google Scholar 

  11. 11.

    Cursiefen C, Maruyama K, Jackson DG, Streilein JW, Kruse FE (2006) Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25(4):443–447

    Article  Google Scholar 

  12. 12.

    Cursiefen C, Wenkel H, Martus P et al (2001) Impact of short-term versus long-term topical steroids on corneal neovascularization after non-high-risk keratoplasty. Graefes Arch Clin Exp Ophthalmol 239(7):514–521

    CAS  Article  Google Scholar 

  13. 13.

    Cunningham MA, Edelman JL, Kaushal S (2008) Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol 53(2):139–149

    Article  Google Scholar 

  14. 14.

    Roshandel D, Eslani M, Baradaran-Rafii A et al (2018) Current and emerging therapies for corneal neovascularization. Ocul Surf 16(4):398–414

    Article  Google Scholar 

  15. 15.

    Cursiefen C, Cao J, Chen L et al (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Investig Ophthalmol Vis Sci 45(8):2666–2673

    Article  Google Scholar 

  16. 16.

    Bachmann BO, Bock F, Wiegand SJ et al (2008) Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol 126(1):71–77

    Article  Google Scholar 

  17. 17.

    Bachmann BO, Luetjen-Drecoll E, Bock F et al (2009) Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation. Br J Ophthalmol 93(8):1075–1080

    CAS  Article  Google Scholar 

  18. 18.

    Cursiefen C, Bock F, Horn FK et al (2009) GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial. Ophthalmology 116(9):1630–1637

    Article  Google Scholar 

  19. 19.

    Cursiefen C, Viaud E, Bock F et al (2014) Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I‑CAN study. Ophthalmology 121(9):1683–1692

    Article  Google Scholar 

  20. 20.

    Bock F, Konig Y, Kruse F, Baier M, Cursiefen C (2008) Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 246(2):281–284

    CAS  Article  Google Scholar 

  21. 21.

    Mayer W (1967) Cryotherapy in corneal vascularization. Arch Ophthalmol 77(5):637–641

    CAS  Article  Google Scholar 

  22. 22.

    Baer JC, Foster CS (1992) Corneal laser photocoagulation for treatment of neovascularization. Efficacy of 577 nm yellow dye laser. Ophthalmology 99(2:173–179

    Article  Google Scholar 

  23. 23.

    Koenig Y, Bock F, Kruse FE, Stock K, Cursiefen C (2012) Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea 31(8):887–892

    Article  Google Scholar 

  24. 24.

    Pillai CT, Dua HS, Hossain P (2000) Fine needle diathermy occlusion of corneal vessels. Investig Ophthalmol Vis Sci 41(8):2148–2153

    CAS  Google Scholar 

  25. 25.

    Spiteri N, Romano V, Zheng Y et al (2015) Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization. Ophthalmology 122(6):1079–1084

    Article  Google Scholar 

  26. 26.

    Le VNH, Hou Y, Bock F, Cursiefen C (2020) Supplemental anti vegf A‑therapy prevents rebound neovascularisation after fine needle diathermy treatment to regress pathological corneal (LYMPH)Angiogenesis. Sci Rep 10(1):3908

    CAS  Article  Google Scholar 

  27. 27.

    Trikha S, Parikh S, Osmond C, Anderson DF, Hossain PN (2014) Long-term outcomes of Fine Needle Diathermy for established corneal neovascularisation. Br J Ophthalmol 98(4):454–458

    CAS  Article  Google Scholar 

  28. 28.

    Romano V, Steger B, Brunner M, Ahmad S, Willoughby CE, Kaye SB (2016) Method for angiographically guided fine-needle diathermy in the treatment of corneal neovascularization. Cornea 35(7):1029–1032

    Article  Google Scholar 

  29. 29.

    Le VNH, Schneider AC, Scholz R, Bock F, Cursiefen C (2018) Fine needle-diathermy regresses pathological corneal (lymph)angiogenesis and promotes high-risk corneal transplant survival. Sci Rep 8(1):5707

    Article  Google Scholar 

  30. 30.

    Williams KA, Keane MC, Galettis RA, Jones VJ, Mills RAD, Coster DJ (2015) The Australian corneal graft registry. https://researchnow-admin.flinders.edu.au/ws/portalfiles/portal/16917342/ACGR_report_2015_2.pdf. Zugegriffen: 9. Jan. 2021

  31. 31.

    Spoerl E, Huhle M, Seiler T (1998) Induction of cross-links in corneal tissue. Exp Eye Res 66(1):97–103

    CAS  Article  Google Scholar 

  32. 32.

    Wollensak G, Sporl E, Seiler T (2003) Treatment of keratoconus by collagen cross linking. Ophthalmologe 100(1):44–49

    CAS  Article  Google Scholar 

  33. 33.

    Cursiefen C (2009) Corneal crosslinking: “Safe and effective”? Ophthalmologe 106(2):164–165 (author reply 165-166.)

    CAS  Article  Google Scholar 

  34. 34.

    Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S (2013) Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology 120(8):1515–1520

    Article  Google Scholar 

  35. 35.

    Knyazer B, Krakauer Y, Tailakh MA et al (2020) Accelerated corneal cross-linking as an adjunct therapy in the management of presumed bacterial keratitis: a cohort study. J Refract Surg 36(4):258–264

    Article  Google Scholar 

  36. 36.

    Ammermann C, Cursiefen C, Hermann M (2014) Corneal cross-linking in microbial keratitis to prevent a chaud keratoplasty: a retrospective case series. Klin Monbl Augenheilkd 231(6):619–625

    CAS  Article  Google Scholar 

  37. 37.

    Toth G, Bucher F, Siebelmann S et al (2016) In situ corneal cross-linking for recurrent corneal melting after boston type 1 keratoprosthesis. Cornea 35(6):884–887

    Article  Google Scholar 

  38. 38.

    Hou Y, Le VNH, Toth G et al (2018) UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant 18(12):2873–2884

    CAS  Article  Google Scholar 

  39. 39.

    Schaub F, Hou Y, Zhang W, Bock F, Hos D, Cursiefen C (2021) Corneal crosslinking to regress pathologic corneal neovascularization before high-risk keratoplasty. Cornea 40(2):147–155

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Matthaei FEBO.

Ethics declarations

Interessenkonflikt

M. Matthaei, D. Hos, F. Bock, V.N.H. Le, Y. Hou, F. Schaub, S. Siebelmann, W. Zhang, S. Roters, B.O. Bachmann und C. Cursiefen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

M. Matthaei und D. Hos teilen sich die Erstautorenschaft.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthaei, M., Hos, D., Bock, F. et al. Präkonditionierung von vaskularisierten Hochrisikoaugen mittels Feinnadeldiathermie und Crosslinking. Ophthalmologe 118, 553–560 (2021). https://doi.org/10.1007/s00347-021-01415-3

Download citation

Schlüsselwörter

  • Hochrisikokeratoplastik
  • Transplantatversagen
  • Abstoßungsreaktion
  • Hornhautvaskularisationen
  • Korneale Neovaskularisation

Keywords

  • High-risk keratoplasty
  • Graft failure
  • Rejection
  • Corneal vascularization
  • Corneal neovascularization