Optische Kohärenztomographie-Biomarker bei epimakulären Membranen und vitreomakulärem Traktionssyndrom

Optical coherence tomography biomarkers in epimacular membranes and vitreomacular traction syndrome

An Erratum to this article was published on 31 March 2021

This article has been updated

Zusammenfassung

Unter Anwendung von hochauflösender Bildgebung wie der optischen Kohärenztomographie (OCT) können wir die verschiedenen Schichten der Netzhaut sowie den vitreoretinalen Übergang und seine Veränderungen sehr differenziert darstellen. Dies umfasst zum einen morphologische Charakteristika traktiver Makulopathien wie epiretinale Gliose und vitreomakuläres Traktionssyndrom. Ebenso lassen sich strukturelle Veränderungen der verschiedenen Schichten der neurosensorischen Netzhaut infolge der Traktion durch diese Pathologien abgrenzen. Letztere wurden in klinischen Studien untersucht und als OCT-Biomarker hinsichtlich ihres prognostischen und prädiktiven Wertes evaluiert. In dieser Übersicht möchten wir verschiedene OCT-Biomarker bei der epimakulären Membran und dem vitreomakulärem Traktionssyndrom darstellen und diskutieren.

Abstract

Using high-resolution imaging, such as optical coherence tomography (OCT), the different layers of the retina as well as the vitreoretinal interface and its alterations can be very clearly differentiated. This includes the morphological characteristics of tractive maculopathies, such as epiretinal gliosis and vitreomacular traction syndrome. Additionally, structural alterations of the various layers of the neurosensory retina as a result of traction due to these pathologies can be demarcated. The latter have been investigated in clinical trials and evaluated as OCT biomarkers with respect to their prognostic and predictive value. In this review we would like to present and discuss various OCT biomarkers in the context of epimacular membranes and vitreomacular traction syndrome.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Change history

Literatur

  1. 1.

    Haritoglou C, Schumann RG, Wolf A (2014) Epiretinal gliosis. Ophthalmologe 111(5):485–497

    CAS  Article  Google Scholar 

  2. 2.

    Kauffmann Y, Ramel YC, Lefebvre A, Isaico R, De Lazzer A, Bonnabel A, Bron AM, Creuzot-Garcher C (2015) Preoperative prognostic factors and predictive score in patients operated on for combined cataract and idiopathic epiretinal membrane. Am J Ophthalmol 160(1):185–192

    Article  Google Scholar 

  3. 3.

    Pavlidis M, Georgalas I, Körber N (2015) Determination of a new parameter, elevated epiretinal membrane, by en face OCT as a prognostic factor for pars plana vitrectomy and safer epiretinal membrane peeling. J Ophthalmol 2015:838646. https://doi.org/10.1155/2015/838646

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kinoshita T, Kovacs KD, Wagley S, Arroyo JG (2011) Morphologic differences in epiretinal membranes on ocular coherence tomography as a predictive factor for surgical outcome. Retina 31(8):1692–1698

    Article  Google Scholar 

  5. 5.

    Gaudric A, Aloulou Y, Tadayoni R, Massin P (2013) Macular pseudoholes with lamellar cleavage of their edge remain pseudoholes. Am J Ophthalmol 155:733–742

    Article  Google Scholar 

  6. 6.

    Agrawal A (2012) Macular dysfunction caused by epiretinal membrane contraction, 5. Aufl. Gass’Atlas of macular diseases, Bd. 1, S 672

    Google Scholar 

  7. 7.

    Govetto A, Lalane RA 3rd, Sarraf D, Figueroa MS, Hubschman JP (2017) Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol 175:99–113

    Article  Google Scholar 

  8. 8.

    Govetto A, Virgili G, Rodriguez FJ, Figueroa MS, Sarraf D, Hubschman JP (2019) Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes: surgical results at 12 months. Retina 39(2):347–357

    Article  Google Scholar 

  9. 9.

    Zur D, Iglicki M, Feldinger L, Schwartz S, Goldstein M, Loewenstein A, Barak A (2018) Disorganization of retinal inner layers as a biomarker for idiopathic epiretinal membrane after macular surgery-the DREAM study. Am J Ophthalmol 196:129–135

    Article  Google Scholar 

  10. 10.

    Garnavou-Xirou C, Xirou T, Gkizis I, Kabanarou SA, Dimitriou E, Theodossiadis P, Chatziralli I (2020) The role of disorganization of retinal inner layers as predictive factor of postoperative outcome in patients with epiretinal membrane. Ophthalmic Res 63(1):13–17

    Article  Google Scholar 

  11. 11.

    Ichikawa Y, Imamura Y, Ishida M (2018) Inner nuclear layer thickness, a biomarker of metamorphopsia in epiretinal membrane, correlates with tangential retinal displacement. Am J Ophthalmol 193:20–27

    Article  Google Scholar 

  12. 12.

    Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2015) Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery. Retina 35(10):2107–2114

    CAS  Article  Google Scholar 

  13. 13.

    Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2014) Time course of changes in aniseikonia and foveal microstructure after vitrectomy for epiretinal membrane. Ophthalmology 121(11):2255–2260

    Article  Google Scholar 

  14. 14.

    Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2015) Stereopsis and optical coherence tomography findings after epiretinal membrane surgery. Retina 35(7):1415–1421

    Article  Google Scholar 

  15. 15.

    Saidha S, Sotirchos ES, Ibrahim MA, Crainiceanu CM, Gelfand JM, Sepah YJ, Ratchford JN, Oh J, Seigo MA, Newsome SD, Balcer LJ, Frohman EM, Green AJ, Nguyen QD, Calabresi PA (2012) Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 11(11):963–967

    Article  Google Scholar 

  16. 16.

    Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ (2013) Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 70(5):629–633

    Article  Google Scholar 

  17. 17.

    Balk LJ, Killestein J, Polman CH, Uitdehaag BMJ, Petzold A (2012) Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 135(12):e226. https://doi.org/10.1093/brain/aws216 (author reply e227)

    Article  PubMed  Google Scholar 

  18. 18.

    Carbonelli M, La Morgia C, Savini G, Cascavilla ML, Borrelli E, Chicani F, do V F Ramos C, Salomao SR, Parisi V, Sebag J, Bandello F, Sadun AA, Carelli V, Barboni P (2015) Macular microcysts in mitochondrial optic neuropathies: prevalence and retinal layer thickness measurements. PLoS One 10(6):e127906. https://doi.org/10.1371/journal.pone.0127906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121(1):142–149

    Article  Google Scholar 

  20. 20.

    Govetto A, Su D, Farajzadeh M, Megerdichian A, Platner E, Ducournau Y, Virgili G, Hubschman JP (2017) Microcystoid macular changes in association with idiopathic epiretinal membranes in eyes with and without glaucoma: clinical insights. Am J Ophthalmol 181:156–165

    CAS  Article  Google Scholar 

  21. 21.

    Dysli M, Ebneter A, Menke MN, Zinkernagel M, Wolf S, Grabe H, Abegg M (2019) Patients with epiretinal membranes display retrograde maculopathy after surgical peeling of the internal limiting membrane. Retina 39(11):2132–2140

    Article  Google Scholar 

  22. 22.

    Kim HJ, Kang JW, Chung H, Kim HC (2014) Correlation of foveal photoreceptor integrity with visual outcome in idiopathic epiretinal membrane. Curr Eye Res 39(6):626–633

    Article  Google Scholar 

  23. 23.

    Inoue M, Morita S, Watanabe Y, Kaneko T, Yamane S, Kobayashi S, Arakawa A, Kadonosono K (2010) Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol 150:834–839

    Article  Google Scholar 

  24. 24.

    Mayer WJ, Vogel M, Neubauer A, Kernt M, Kampik A, Wolf A, Haritoglou C (2013) Pars plana vitrectomy and internal limiting membrane peeling in epimacular membranes: correlation of function and morphology across the macula. Ophthalmologica 230(1):9–17

    CAS  Article  Google Scholar 

  25. 25.

    Govetto A, Bhavsar KV, Virgili G, Gerber MJ, Freund KB, Curcio CA, Burgoyne CF, Hubschman JP, Sarraf D (2017) Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives. Am J Ophthalmol 184:167–180

    Article  Google Scholar 

  26. 26.

    Pison A, Dupas B, Couturier A, Rothschild PR, Tadayoni R (2016) Evolution of subfoveal detachments secondary to idiopathic epiretinal membranes after surgery. Ophthalmology 123(3):583–589

    Article  Google Scholar 

  27. 27.

    Shiono A, Kogo J, Klose G, Takeda H, Ueno H, Tokuda N, Inoue J, Matsuzawa A, Kayama N, Ueno S, Takagi H (2013) Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery. Ophthalmology 120(4):788–794

    Article  Google Scholar 

  28. 28.

    Stalmans P (2016) A retrospective cohort study in patients with tractional diseases of the vitreomacular interface (ReCoVit). Graefes Arch Clin Exp Ophthalmol 254(4):617–628

    Article  Google Scholar 

  29. 29.

    Almeida DR, Chin EK, Rahim K, Folk JC, Russell SR (2015) Factors associated with spontaneous release of vitreomacular traction. Retina 35(3):492–497

    Article  Google Scholar 

  30. 30.

    Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, Haller JA, MIVI-TRUST Study Group.Stalmans P et al (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367(7):606–615

    CAS  Article  Google Scholar 

  31. 31.

    Theodossiadis GP, Grigoropoulos VG, Theodoropoulou S, Datseris I, Theodossiadis PG (2014) Spontaneous resolution of vitreomacular traction demonstrated by spectral-domain optical coherence tomography. Am J Ophthalmol 157(4):842–851

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. C. Haritoglou.

Ethics declarations

Interessenkonflikt

C. Haritoglou, J.P. Hubschman, R.G. Schumann und M. Maier geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Originalversion dieses Beitrags wurde korrigiert: In dem ursprünglichen Artikel wurde der Name des Autors M. Maier falsch geschrieben.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haritoglou, C., Hubschman, J.P., Schumann, R.G. et al. Optische Kohärenztomographie-Biomarker bei epimakulären Membranen und vitreomakulärem Traktionssyndrom. Ophthalmologe 118, 308–319 (2021). https://doi.org/10.1007/s00347-021-01349-w

Download citation

Schlüsselwörter

  • Netzhaut
  • Vitreoretinaler Übergang
  • Epiretinale Gliose
  • Prädiktiver Faktor
  • Prognostischer Faktor

Keywords

  • Retina
  • Vitreoretinal interface
  • Epiretinal gliosis
  • Predictive factor
  • Prognostic factor