Biomarker bei durchgreifenden und lamellären Defekten der Makula

Biomarkers in full-thickness and lamellar defects of the macula

Zusammenfassung

Hintergrund

Unter „Biomarker“ versteht man „biologische Marker“, die objektiv auf den Gesundheitszustand hinweisen können. Neben funktionellen und zeitlichen Faktoren haben insbesondere bildgebende Biomarker in den letzten Jahren an Bedeutung gewonnen. Bei durchgreifenden und lamellären Defekten der Makula wurden zahlreiche bildgebende Parameter beschrieben. Diese Erkenntnisse führten für beide Krankheitsbilder zu neuen Einteilungen, die sich auf wichtige „Biomarker“ dieser Krankheitsbilder und charakteristische Merkmale beschriebener Unterformen stützen.

Methode

Bildgebende Biomarker für durchgreifende und lamelläre Defekte der Makula werden im Hinblick auf die Klassifikation und ihre funktionelle prognostische Bedeutung beschrieben. Die Bedeutung dieser Biomarker wird dargestellt.

Ergebnisse

Biomarker sind die Grundlage für die aktuelle Klassifikation von durchgreifenden und lamellären Makuladefekten. Biomarker dienen weiterhin zur prognostischen und therapeutischen Einschätzung und beeinflussen die operative Strategie. Zur Behandlung eines durchgreifenden Makulaforamens gibt es abhängig von der Foramengröße und anderen Biomarkern verschiedene operative Strategien. So erhöht die invertierte ILM(„internal limiting membrane“)-Flap-Technik die Verschlussrate bei großen Makulaforamina. Zeigt ein Makulaschichtforamen eine deutliche Progredienz des Befundes, so ermöglicht eine frühzeitige operative Intervention eine gute anatomische und funktionelle Prognose.

Schlussfolgerung

Die multimodale Diagnostik liefert bei Makulaforamen und Makulaschichtforamen wichtige prä-, intra- und postoperative Merkmale, die als Biomarker für die genaue Klassifikation, die Therapiestrategie sowie die Beurteilung der Prognose von herausragender Bedeutung sind.

Abstract

Background

Biomarkers are characteristic biological measurable signs and objective parameters to detect the state of health. Besides functional and temporal factors, imaging biomarkers play an increasingly important role. In full-thickness and lamellar defects of the macula numerous imaging parameters have been described. This knowledge resulted in new classifications for both clinical pictures, which are based on important biomarkers of these clinical pictures and characteristic features of described subtypes.

Methods

Imaging biomarkers for full-thickness and lamellar macular defects are described with respect to the classification and their functional prognostic importance. The importance of these biomarkers is presented.

Results

The current classification of full-thickness and lamellar macular defects is based on structural biomarkers. Biomarkers are important for prognostic and therapeutic evaluation and they have an impact on the surgical strategy. There are various surgical strategies for treatment of full-thickness macular holes depending on the size of the foramen and other biomarkers. The inverted ILM flap technique improves the closure rate of large macular holes. In lamellar macular holes showing signs of progression an early surgical intervention results in a good anatomical and functional prognosis.

Conclusion

Multimodal diagnostics provide important preoperative, intraoperative, and postoperative features for macular holes and lamellar macular holes, which are essential biomarkers for the exact classification, the therapeutic strategy and for assessment of the prognosis.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. 1.

    Gass JD (1988) Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol 106(5):629–639

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Gass JD (1975) Lamellar macular hole: a complication of cystoid macular edema after cataract extraction: a clinicopathologic case report. Trans Am Ophthalmol Soc 73:231–250

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Witkin AJ, Ko TH, Fujimoto JG, Schuman JS, Baumal CR, Rogers AH, Reichel E, Duker JS (2006) Redefining lamellar holes and the vitreomacular interface: an ultrahigh-resolution optical coherence tomography study. Ophthalmology 113(3):388–397

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120(12):2611–2619

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, Sebag J, Gaudric A, Staurenghi G, Haritoglou C, Kadonosono K, Thompson JT, Chang S, Bottoni F, Tadayoni R (2020) Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-315432

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Phadikar P, Saxena S, Ruia S, Lai TY, Meyer CH, Eliott D (2017) The potential of spectral domain optical coherence tomography imaging based retinal biomarkers. Int J Retina Vitreous. https://doi.org/10.1186/s40942-016-0054-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS (2017) Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res 60:120–143

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Staurenghi G, Sadda S, Chakravarthy U, Spaide RF (2014) International nomenclature for optical coherence tomography (IN•OCT) panel. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology 121(8):1572–1578

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Haritoglou C, Wolf A, Wachtlin J (2019) Chirurgie des großen und persistierenden Makulaforamens. Ophthalmologe 116:1011–1019

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Kelly NE, Wendel RT (1991) Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol 109:654–659

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    García-Layana A, García-Arumí J, Ruiz-Moreno JS et al (2015) Review of current management of vitreomacular traction and macular hole. J Ophthalmol. https://doi.org/10.1155/2015/809640

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ullrich S, Haritoglou C, Gass C, Schaumberger M, Ulbig MW, Kampik A (2002) Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol 86(4):390–393

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Maier M, Rass S, Mueller C, Feucht N, Lohmann CP (2013) Transconjunctival sutureless pars plana vitrectomy and Brilliant Peel (BP)-assisted ILM peeling in patients with macular holes. Klin Monbl Augenheilkd 230(7):701–706

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Ip MS, Baker BJ, Duker JS et al (2002) Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol 120:29–35

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Salter AB, Folgar FA, Weissbrot J, Wald KJ (2012) Macular hole surgery prognostic success rates based on macular hole size. Ophthalmic Surg Lasers Imaging 43:184–189

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Michalewska Z, Michalewski J, Adelman RA, Nawrocki J (2010) Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 117(10):2018–2025

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Michalewska Z, Michalewski J, Dulczewska-Cichecka K, Adelman RA, Nawrocki J (2015) Temporal inverted internal limiting membrane flap technique versus classic inverted internal limiting membrane flap technique: a comparative study. Retina 35:1844–1850

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Kase S, Saito W, Mori S, Saito M, Ando R, Dong Z, Suzuki T, Noda K, Ishida S (2017) Clinical and histological evaluation of large macular hole surgery using the inverted internal limiting membrane flap technique. Clin Ophthalmol. https://doi.org/10.2147/OPTH.S119762

  19. 19.

    Gu C, Qiu Q (2018) Inverted internal limiting membrane flap technique for large macular holes: a systematic review and single-arm meta-analysis. Graefes Arch Clin Exp Ophthalmol 256:1041–1049

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Hyashi H, Kuriyama S (2014) Foveal microstructure in macular holes surgically closed by inverted internal limiting membrane flap technique. Retina 34(12):2444–2450

    Article  Google Scholar 

  21. 21.

    Yuan J, Zhang LL, Lu YJ, Han MY, Yu AH, Cai XJ (2017) Vitrectomy with internal limiting membrane peeling versus inverted internal limiting membrane flap technique for macular hole-induced retinal detachment: a systematic review of literature and metaanalysis. BMC Ophthalmol 17:219. https://doi.org/10.1186/s12886-017-0619-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rizzo S, Tartaro R, Barca F, Caporossi T, Bacherini D, Giansanti F (2018) Internal limiting membrane peeling versus inverted flap technique for treatment of full-thickness macular holes: A comparative study in a large series of patients. Retina 38(Suppl 1):S73–S78

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Maier M, Bohnacker S, Klein J, Klaas J, Feucht N, Nasseri A, Lohmann CP (2019) Vitrectomy and iOCTassisted inverted ILM flap technique in patients with full thickness macular holes. Ophthalmologe 116(7):617–624

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Shiode Y, Morizane Y, Matoba R, Hirano M, Doi S, Toshima S, Takahashi K, Araki R, Kanzaki Y, Hosogi M, Yonezawa T, Yoshida A, Shiraga F (2017) The role of inverted internal limiting membrane flap in macular hole closure. Invest Ophthalmol Vis Sci 58(11):4847–4855. https://doi.org/10.1167/iovs.17-21756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rossi T, Gelso A, Costagliola C, Trillo C, Costa A, Gesualdo C, Ripandelli G (2017) Macular hole closure patterns associated with different internal limiting membrane flap techniques. Graefes Arch Clin Exp Ophthalmol 255(6):1073–1078

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Yamashita T, Sakamoto T, Terasaki H, Iwasaki M, Ogushi Y, Okamoto F, Takeuchi M, Yasukawa T, Takamura Y, Ogata N, Nakamura Y, writing committee of Japan-Clinical Retina Research Team (J-CREST) (2018) Best surgical technique and outcomes for large macular holes: retrospective multicentre study in Japan. Acta Ophthalmol. https://doi.org/10.1111/aos.13795

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hattenbach LO, Framme C, Junker B, Pielen A, Agostini H, Maier M (2016) Intraoperative real-time OCT in macular surgery. Ophthalmologe 113(8):656–662

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Maier M, Nasseri A, Framme C, Bohnacker S, Becker MD, Heinrich D, Agostini H, Feucht N, Lohmann CP, Hattenbach LO (2017) Intraoperative optical coherence tomography in vitreoretinal surgery: clinical experiences and future developments. Klin Monbl Augenheilkd. https://doi.org/10.1055/s-0043-106304

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wakely L, Rahman R, Stephenson J (2012) A comparison of several methods of macular hole measurement using optical coherence tomography, and their value in predicting anatomical and visual outcomes. Br J Ophthalmol 96(7):1003–1007

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Maier M, Abraham S, Frank C, Feucht N, Lohmann CP (2015) Ocriplasmin as a treatment option for symptomatic vitreomacular traction with and without macular hole. First clinical experiences. Ophthalmologe 112(12):990–994. https://doi.org/10.1007/s00347-015-0073-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Maier M, Abraham S, Frank C, Lohmann CP, Feucht N (2017) Pharmaological vitreolysis with ocriplasmin as a treatment option for symptomatic focal vitreomacular traction with or without macular holes (≤400 μm) compared to transconjunctival vitrectomy. Ophthalmologe 114(2):148–154

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Maier M, Abraham S, Frank C, Lohmann CP, Feucht N (2016) Therapeutic options in vitreomacular traction with or without a macular hole. Klin Monbl Augenheilkd 233(5):622–630

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Prospero Ponce CM, Stevenson W, Gelman R, Agarwal DR, Christoforidis JB (2016) Ocriplasmin: who is the best candidate? Clin Ophthalmol 10:485–495. https://doi.org/10.2147/OPTH.S97947

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Steinle NC, Dhoot DS, Quezada Ruiz C, Castellarin AA, Pieramici DJ, See RF, Couvillion SC, Nasir MA, Avery RL (2017) Treatment of Vitreomacular traction with intravitreal perfluoropropane (C3F8) INJECTION. Retina 37(4):643–650. https://doi.org/10.1097/IAE.0000000000001237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dhoot DS, Hariprasad SM, Steinle NC (2017) Current treatment options for the management of vitreomacular traction. Ophthalmic Surg Lasers Imaging Retina 48(5):374–377. https://doi.org/10.3928/23258160-20170428-02

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Shahlaee A, Rahimy E, Hsu J, Gupta OP, Ho AC (2016) Preoperative and postoperative features of macular holes on en face imaging and optical coherence tomography angiography. Am J Ophthalmol Case Rep 5:20–25

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Bonnabel A, Bron AM, Isaico R, Dugas B, Nicot F, Creuzot-Garcher C (2013) Long-term anatomical and functional outcomes of idiopathic macular hole surgery. The yield of spectral-domain OCT combined with microperimetry. Graefes Arch Clin Exp Ophthalmol 251(11):2505–2511

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Scupola A, Mastrocola A, Sasso P, Fasciani R, Montrone L, Falsini B, Abed E (2013) Assessment of retinal function before and after idiopathic macular hole surgery. Am J Ophthalmol 156(1):132–139.e1

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg C (2011) Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 31(7):1332–1336

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Ehlers JP, Xu D, Kaiser PK et al (2014) Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography. Retina 34:213–221

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ehlers JP, Uchida A, Srivastava SK, Hu M (2019) Predictive model for macular hole closure speed: insights from Intraoperative optical coherence tomography. Transl Vis Sci Technol 8(1):18

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Seider MI, Carrasco-Zevallos OM, Gunther R, Viehland C, Keller B, Shen L, Hahn P, Mahmoud TH, Dandridge A, Izatt JA, Toth CA (2018) Real-time volumetric imaging of Vitreoretinal surgery with a prototype microscope-integrated swept-source OCT device. Ophthalmol Retina 2(5):401–410

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Eckardt C, Eckert T, Eckardt U, Porkert U, Gesser C (2008) Macular hole surgery with air tamponade and optical coherence tomography-based duration of face-down positioning. Retina 28(8):1087–1096

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Yamashita T, Sakamoto T, Yamashita T, Sonoda S, Yamakiri K, Otsuka H, Hisatomi T, Imaki H, Ishibashi T, Dugel PU (2014) Individualized, spectral domain-optical coherence tomography-guided facedown posturing after macular hole surgery: minimizing treatment burden and maximizing outcome. Retina 34(7):1367–1375

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Pasu S, Bell L, Zenasni Z, Lanz D, Simmonds IA, Thompson A, Yorston D, Laidlaw DAH, Bunce C, Hooper R, Bainbridge JWB, Positioning In Macular Hole Surgery (PIMS) Study Group (2020) Facedown Positioning Following Surgery for Large Full-Thickness Macular Hole: A Multicenter Randomized Clinical Trial. JAMA Ophthalmol 138(7):725–730. https://doi.org/10.1001/jamaophthalmol.2020.0987

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Runkle AP, Srivastava SK, Yuan A, Kaiser PK, Singh RP, Reese JL, Ehlers JP (2018) Factors associated with development of dissociated optic nerve fiber layer appearance in the pioneer Intraoperative optical coherence tomography study. Retina 38(Suppl 1):S103–S109. https://doi.org/10.1097/IAE.0000000000002017

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ramtohul P, Parrat E, Denis D, Lorenzi U (2020) Inverted internal limiting membrane flap technique versus complete internal limiting membrane peeling in large macular hole surgery: a comparative study. BMC Ophthalmol 20(1):11. https://doi.org/10.1186/s12886-019-1294-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Vieregge M, Valmaggia C, Scholl HPN, Guber J (2019) Microstructural retinal regeneration after internal limiting membrane flap surgery for repair of large macular holes: a 1‑year follow-up study. Int Ophthalmol 39(6):1277–1282

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Bonińska K, Nawrocki J, Michalewska Z (2018) Mechanism of “flap closure” after the inverted internal limiting membrane flap technique. Retina 38(11):2184–2189

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Maier M, Bleidißel N, Bohnacker S, Lohmann C, Feucht N (2019) Funktionelle und morphologische Ergebnisse nach ppV und i‑OCT assistiertem ILM-Peeling mit invertierter ILM-Flap Technik bei Patienten mit durchgreifenden Makulaforamen – eine Langzeitanalyse über 12 Monate, S 94

    Google Scholar 

  51. 51.

    Iwasaki M, Miyamoto H, Imaizumi H (2020) Effects of inverted internal limiting membrane technique and insertion technique on outer retinal restoration associated with glial proliferation in large macular holes. Graefes Arch Clin Exp Ophthalmol 258(9):1841–1849. https://doi.org/10.1007/s00417-020-04655-2

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Shen Y, Lin X, Zhang L, Wu M (2020) Comparative efficacy evaluation of inverted internal limiting membrane flap technique and internal limiting membrane peeling in large macular holes: a systematic review and meta-analysis. BMC Ophthalmol 20(1):14. https://doi.org/10.1186/s12886-019-1271-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Purtskhvanidze K, Frühsorger B, Bartsch S, Hedderich J, Roider J, Treumer F (2018) Persistent full-thickness idiopathic macular hole: anatomical and functional outcome of revitrectomy with autologous platelet concentrate or autologous wholeblood. Ophthalmologica 239(1):19–26

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Morizane Y, Shiraga F, Kimura S et al (2014) Autologous transplantation of the internal limiting membrane for refractory macular holes. Am J Ophthalmol 157(4):861–869

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Grewal DS, Mahmoud TH (2016) Autologous neurosensory retinal free flap for closure of refractory myopic macular holes. JAMA Ophthalmol 134(2):229–230

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Chen SN, Yang CM (2016) Lens capsular flap transplantation in the management of refractory macular hole from multiple etiologies. Retina 36(1):163–170

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Rizzo S, Caporossi T, Tartaro R, Finocchio L, Franco F, Barca F, Giansanti F (2019) A human amniotic membrane plug to promote retinal breaks repair and recurrent macular hole closure. Retina 39(Suppl 1):S95–S103

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Meyer CH, Borny R, Horchi N (2017) Subretinal fluid application to close a refractory full thickness macular hole. Int J Retina Vitreous 3:44. https://doi.org/10.1186/s40942-017-0094-7

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Fotis K, Alexander P, Sax J, Reddie I, Kang CY, Chandra A (2019) Macular detachment for the treatment of persistent full-thickness macular holes. Retina 39(Suppl 1):S104–S107

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Vogt D, Bottoni F, Priglinger SG, Schumann RG (2017) Lamellar macular holes with hyporeflective epiretinal proliferation : OCT diagnostics and clinical course. Ophthalmologe 114(12):1100–1109

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Bringmann A, Unterlauft JD, Wiedemann R, Rehak M, Wiedemann P (2020) Morphology of partial-thickness macular defects: presumed roles of Müller cells and tissue layer interfaces of low mechanical stability. Int J Retina Vitreous 6:28. https://doi.org/10.1186/s40942-020-00232-1

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Danielescu C, Stanca HT, Balta F (2020) The management of Lamellar macular holes: a review. J Ophthalmol. https://doi.org/10.1155/2020/3526316

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Haritoglou C, Schumann RG (2017) Indications and surgical approach for lamellar macular holes and pseudoholes. Ophthalmologe 114(12):1117–1121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Parolini B, Schumann RG, Cereda MG, Haritoglou C, Pertile G (2011) Lamellar macular hole: a clinicopathologic correlation of surgically excised epiretinal memrbanes. Invest Ophthalmol Vis Sci 52(12):9074–9083

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Schumann RG, Compera D, Schaumberger MM, Wolf A, Fazekas C, Mayer WJ, Kampik A, Haritoglou C (2015) Epiretinal membrane characteristics correlate with photoreceptor layer defects in lamellar macular holes and macular pseudoholes. Retina 35(4):727–735

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Pang CE, Spaide RF, Freund KB (2015) Comparing functional and morphologic characteristics of lamellar macular holes with and without lamellar hoe-associated epiretinal proliferation. Retina 35(4):720–726

    Article  Google Scholar 

  67. 67.

    Vogt D, Wachtlin J, Priglinger SG, Schumann RG (2019) Lamellar macular holes : Morphological characteristics and treatment success. Ophthalmologe 116(11):1020–1025

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Compera D, Schumann RG, Cereda MG, Acquistapace A, Lita V, Priglinger SG, Staurenghi G, Bottoni F (2018) Progression of lamellar hole-associated epiretinal proliferation and retinal changes during long-term follow-up. Br J Ophthalmol 102(1):84–90 (Jan)

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Govetto A, Dacquay Y, Farajzadeh M, Platner E, Hirabayashi K, Hosseini H, Schwartz SD, Hubschman JP (2016) Lamellar macular hole: two distinct clinical entities? Am J Ophthalmol 164:99–109 (Indications and surgical approach for lamellar macular holes and pseudoholes)

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Bottoni F, Deiro AP, Giani A, Orini C, Cigada M, Staurenghi G (2013) The natural history of lamellar macular holes: a spectral domain optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 251(2):467–475

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Purtskhvanidze K, Balken L, Hamann T, Wöster L, von der Burchard C, Roider J, Treumer F (2018) Long-term follow-up of lamellar macular holes and pseudoholes over at least 5 years. Graefes Arch Clin Exp Ophthalmol 256(6):1067–1078

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Marques MF, Rodrigues S, Raimundo M, Costa J, Marques JP, Alfaiate M, Figueira J (2018) Epiretinal proliferations associated with Lamellar macular holes: clinical and surgical implications. Ophthalmologica 240(1):8–13

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Theodossiadis PG, Grigoropoulos VG, Emfietzoglou I, Nikolaidis P, Vergados I, Apostolopoulos M, Theodossiadis GP (2009) Evolution of lamellar macular hole studied by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 247(1):13–20

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Figueroa MS, Govetto A, Steel DH, Sebag J, Virgili G, Hubschman JP (2019) Pars plana vitrectomy for the treatment of tractional and degenerative Lamellar macular holes: functional and anatomical results. Retina 39(11):2090–2098

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Lee CS, Koh HJ, Lim HT, Lee KS, Lee SC (2012) Prognostic factors in vitrectomy for lamellar macular hole assessed by spectral-domain optical coherence tomography. Acta Ophthalmol 90(8):e597–e602 (Dec)

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Sun JP, Chen SN, Chuang CC, Lin CW, Lin CJ, Huang JY, Yang CM, Chen MS, Yang CH (2013) Surgical treatment of lamellar macular hole secondary to epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 251(12):2681–2688. https://doi.org/10.1007/s00417-013-2364-x

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Coassin M, Mastrofilippo V, Stewart JM, Fanti A, Belpoliti M, Cimino L, Iovieno A, Fontana L (2018) Graefe 2018 Lamellar macular holes: surgical outcome of 106 patients with long-term follow-up. Graefes Arch Clin Exp Ophthalmol 256(7):1265–1273

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Takahashi K, Morizane Y, Kimura S, Shiode Y, Doi S, Okanouchi T, Takasu I, Inoue Y, Shiraga F (2019) Results of lamellar macular hole-associated epiretinal proliferation embedding technique for the treatment of degenerative lamellar macular hole. Graefes Arch Clin Exp Ophthalmol 257(10):2147–2154. https://doi.org/10.1007/s00417-019-04425-9

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Gonzalez A, Amin S, Iqbal O, Potter SM, Khurshid SG (2019) Use of autologous platelets for Lamellar macular hole repair. Case Rep Ophthalmol Med. https://doi.org/10.1155/2019/1471754

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. M. Maier FEBO.

Ethics declarations

Interessenkonflikt

M. Maier, R. Schumann, J. Friedrich, J. Klaas und C. Haritoglou geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maier, M., Schumann, R., Friedrich, J. et al. Biomarker bei durchgreifenden und lamellären Defekten der Makula. Ophthalmologe 118, 321–336 (2021). https://doi.org/10.1007/s00347-021-01340-5

Download citation

Schlüsselwörter

  • Makulaforamen
  • Photorezeptoraußensegment
  • Spectral-domain optische Kohärenztomographie
  • Intraoperative optische Kohärenztomographie
  • Makulaschichtforamen

Keywords

  • Macular holes
  • Photoreceptor outer segment
  • Spectral domain optical coherence tomography
  • Intraoperative optical coherence tomography
  • Lamellar macular hole