Skip to main content
Log in

Neuroinflammation bei neuronalen Ceroid-Lipofuszinosen

Neuroinflammation in neuronal ceroid lipofuscinosis

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Netzhautdegeneration und Neuroinflammation sind meist frühe Merkmale verschiedener Subtypen von neuronalen Ceroid-Lipofuszinosen (NCL) bei Patienten und in genetischen Tiermodellen.

Fragestellung

Es soll ein Überblick über den aktuellen Forschungsstand zum Thema Neuroinflammation bei NCL gegeben werden.

Material und Methoden

Es erfolgen eine Betrachtung von relevanten Veröffentlichungen in PubMed sowie die Darstellung eigener Forschungsdaten.

Ergebnisse

Im zentralen Nervensystem (ZNS) und in der Netzhaut von NCL-Patienten und Tiermodellen werden Mikroglia und andere Gliazellen chronisch aktiviert und zeigen verschiedenste Dysfunktionen. Dies geht mit signifikanten Änderungen in ihrem Transkriptom und Proteom einher. Bei NCL findet sich ebenfalls eine Beteiligung der adaptiven Immunantwort, nachgewiesen durch das Einwandern von Autoantikörpern und aktivierten T‑Zellen.

Schlussfolgerungen

Das tiefere Verständnis der molekularen Abläufe, die zur Neuroinflammation beitragen und letztendlich zum Absterben von Neuronen führen, stellt eine wichtige Basis für die Entdeckung möglicher Biomarker und die Entwicklung von Immuntherapien bei der NCL dar.

Abstract

Background

Retinal degeneration and neuroinflammation are often early hallmarks of different subtypes of neuronal ceroid lipofuscinosis (NCL) in patients and genetic animal models.

Objective

This article gives a summary of recently published research articles and novel concepts in the field of NCL-related neuroinflammation.

Material and methods

A search was carried out in PubMed for relevant publications and the results as well as own NCL-related research are discussed.

Results

Microglia and other glial cells are chronically activated and show various dysfunctions in the central nervous system (CNS) and retina of NCL patients and animal models. This is accompanied by significant changes in the transcriptome and proteome. In NCL there is also involvement of the adaptive immune response, as demonstrated by the influx of autoantibodies and activated T cells.

Conclusion

A deeper understanding of the molecular processes that contribute to neuroinflammation and ultimately lead to neuronal cell death is an important basis for the discovery of possible biomarkers and the development of immunotherapies in NCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Åberg L, Talling M, Härkönen T et al (2008) Intermittent prednisolone and autoantibodies to GAD65 in juvenile neuronal ceroid lipofuscinosis. Neurology 70:1218–1220

    Article  Google Scholar 

  2. Atiskova Y, Bartsch S, Danyukova T et al (2019) Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci Rep 9(1):14185. https://doi.org/10.1038/s41598-019-50726-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Augustine EF, Beck CA, Adams HR et al (2019) Short-term administration of mycophenolate is well-tolerated in CLN3 disease (juvenile neuronal ceroid lipofuscinosis). JIMD Rep 43:117–124

    Article  Google Scholar 

  4. Benitez BA, Cairns NJ, Schmidt RE et al (2015) Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. acta neuropathol commun 3:73–73

    Article  Google Scholar 

  5. Brooks AI, Chattopadhyay S, Mitchison HM et al (2003) Functional categorization of gene expression changes in the cerebellum of a Cln3-knockout mouse model for Batten disease. Mol Genet Metab 78:17–30

    Article  CAS  Google Scholar 

  6. Castaneda JA, Pearce DA (2008) Identification of alpha-fetoprotein as an autoantigen in juvenile Batten disease. Neurobiol Dis 29:92–102

    Article  CAS  Google Scholar 

  7. Chattopadhyay S, Ito M, Cooper JD et al (2002) An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet 11(12):1421–1431. https://doi.org/10.1093/hmg/11.12.1421

    Article  CAS  PubMed  Google Scholar 

  8. Chattopadhyay S, Kriscenski-Perry E, Wenger DA et al (2002) An autoantibody to GAD65 in sera of patients with juvenile neuronal ceroid lipofuscinoses. Neurology 59:1816–1817

    Article  Google Scholar 

  9. Damme M, Brandenstein L, Fehr S et al (2014) Gene disruption of Mfsd8 in mice provides the first animal model for CLN7 disease. Neurobiol Dis 65:12–24

    Article  CAS  Google Scholar 

  10. Dannhausen K, Möhle C, Langmann T (2018) Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 11(9):dmm33597

    Article  Google Scholar 

  11. Domowicz MS, Chan WC, Claudio-Vázquez P et al (2019) Global brain transcriptome analysis of a Tpp1 neuronal ceroid lipofuscinoses mouse model. ASN Neuro. https://doi.org/10.1177/1759091419843393

    Article  PubMed  PubMed Central  Google Scholar 

  12. Groh J, Berve K, Martini R (2017) Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol Ther 25:1889–1899

    Article  CAS  Google Scholar 

  13. Groh J, Kuhl TG, Ip CW et al (2013) Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 136:1083–1101

    Article  Google Scholar 

  14. Groh J, Martini R (2017) Chancen für die Behandlung von Kinderdemenz – Medizinische Fakultät. https://www.med.uni-wuerzburg.de/aktuelles/meldungen/single/news/chancen-fuer-die-behandlung-von-kinderdemenz/. Zugegriffen: 31.8.2020

  15. Guarneri R, Russo D, Cascio C et al (2004) Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis. Brain Res Brain Res Protoc 1014:209–220

    CAS  Google Scholar 

  16. Jalanko A, Vesa J, Manninen T et al (2005) Mice with Ppt1 ∆ex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiol Dis 18:226–241

    Article  CAS  Google Scholar 

  17. Jankowiak W, Brandenstein L, Dulz S et al (2016) Retinal degeneration in mice deficient in the lysosomal membrane protein CLN7. Invest Ophthalmol Vis Sci 57:4989–4998

    Article  CAS  Google Scholar 

  18. Kaufman MB (2017) Pharmaceutical approval update. P T 42:562–580

    PubMed  PubMed Central  Google Scholar 

  19. Kielar C, Maddox L, Bible E et al (2007) Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 25:150–162

    Article  CAS  Google Scholar 

  20. Lange J, Haslett LJ, Lloyd-Evans E et al (2018) Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. acta neuropathol commun 6:74–74

    Article  Google Scholar 

  21. Leinonen H, Keksa-Goldsteine V, Ragauskas S et al (2017) Retinal degeneration in a mouse model of CLN5 disease is associated with compromised autophagy. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  22. Lim MJ, Alexander N, Benedict JW et al (2007) IgG entry and deposition are components of the neuroimmune response in Batten disease. Neurobiol Dis 25:239–251

    Article  CAS  Google Scholar 

  23. Lim MJ, Beake J, Bible E et al (2006) Distinct patterns of serum immunoreactivity as evidence for multiple brain-directed autoantibodies in juvenile neuronal ceroid lipofuscinosis. Neuropathol Appl Neurobiol 32:469–482

    Article  CAS  Google Scholar 

  24. Macauley SL, Pekny M, Sands MS (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31:15575–15585

    Article  CAS  Google Scholar 

  25. Macauley SL, Wong AM, Shyng C et al (2014) An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J Neurosci 34:13077–13082

    Article  CAS  Google Scholar 

  26. Masten MC, Williams JD, Vermilion J et al (2020) The CLN3 disease staging system: a new tool for clinical research in batten disease. Neurology 94:e2436–e2440

    Article  Google Scholar 

  27. Mirza M, Volz C, Karlstetter M et al (2013) Progressive retinal degeneration and glial activation in the CLN6 (nclf) mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation. PLoS One 8:e75963

    Article  CAS  Google Scholar 

  28. Naidu S, Maumanee I, Olson J et al (1988) Selenium treatment in neuronal ceroid-lipofuscinosis. Am J Med Genet 31:283–289

    Article  Google Scholar 

  29. Palmer DN, Barry LA, Tyynelä J et al (2013) NCL disease mechanisms. Biochim Biophys Acta. https://doi.org/10.1016/j.bbadis.2013.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  30. Partanen S, Haapanen A, Kielar C et al (2008) Synaptic changes in the thalamocortical system of cathepsin D‑deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J Neuropathol Exp Neurol 67:16–29

    Article  CAS  Google Scholar 

  31. Parviainen L, Dihanich S, Anderson GW et al (2017) Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun 5:74–74

    Article  Google Scholar 

  32. Pontikis CC, Cella CV, Parihar N et al (2004) Late onset neurodegeneration in the Cln3 −/− mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation. Brain Res Brain Res Protoc 1023:231–242

    CAS  Google Scholar 

  33. Pontikis CC, Cotman SL, Macdonald ME et al (2005) Thalamocortical neuron loss and localized astrocytosis in the Cln3 ∆ex7/8 knock-in mouse model of Batten disease. Neurobiol Dis 20:823–836

    Article  CAS  Google Scholar 

  34. Qiao X, Lu JY, Hofmann SL (2007) Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response. BMC Neurosci 8:95–95

    Article  Google Scholar 

  35. Saha A, Sarkar C, Singh SP et al (2012) The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: amelioration by resveratrol. Hum Mol Genet 21:2233–2244

    Article  CAS  Google Scholar 

  36. Santavuori P, Heiskala H, Autti T et al (1989) Comparison of the clinical courses in patients with juvenile neuronal ceroid lipofuscinosis receiving antioxidant treatment and those without antioxidant treatment. Adv Exp Med Biol. https://doi.org/10.1007/978-1-4899-5339-1_19

    Article  PubMed  Google Scholar 

  37. Santavuori P, Heiskala H, Westermarck T et al (1988) Experience over 17 years with antioxidant treatment in Spielmeyer-Sjögren disease. Am J Med Genet 5:265–274

    Article  CAS  Google Scholar 

  38. Santavuori P, Moren R (1977) Experience of antioxidant treatment in neuronal ceroid lipofuscinosis of Spielmeyer Sjogren type. Neuropadiatrie 8:333–344

    Article  CAS  Google Scholar 

  39. Santavuori P, Westermarck T, Rapola J et al (1985) Antioxidant treatment in Spielmeyer-Sjögren’s disease. Acta Neurol Scand 71:136–145

    Article  CAS  Google Scholar 

  40. Seehafer SS, Ramirez-Montealegre D, Wong AMS et al (2011) Immunosuppression alters disease severity in juvenile Batten disease mice. J Neuroimmunol 230:169–172

    Article  CAS  Google Scholar 

  41. Sleat DE, Wiseman JA, El-Banna M et al (2019) Analysis of brain and cerebrospinal fluid from mouse models of the three major forms of neuronal ceroid lipofuscinosis reveals changes in the lysosomal proteome. Mol Cell Proteomics 18:2244–2261

    Article  Google Scholar 

  42. Tarczyluk-Wells MA, Salzlechner C, Najafi AR et al (2019) Combined anti-inflammatory and neuroprotective treatments have the potential to impact disease phenotypes in Cln3 (−/−) mice. Front Neurol 10:963

    Article  Google Scholar 

  43. UKE (2019) Jahrestagung_2019_Neuigkeiten_Therapie_und_Forschung.pdf. https://www.ncl-deutschland.de/medizinisches.html. Zugegriffen: 31.8.2020

  44. Von Schantz C, Kielar C, Hansen SN et al (2009) Progressive thalamocortical neuron loss in Cln5 deficient mice: distinct effects in Finnish variant late infantile NCL. Neurobiol Dis 34:308–319

    Article  Google Scholar 

  45. Westermarck T (1977) Selenium content of tissues in Finnish infants and adults with various diseases, and studies on the effects of selenium supplementation in neuronal ceroid lipofuscinosis patients. Acta Pharmacol Toxicol 41:121–128

    Article  CAS  Google Scholar 

  46. Xiong J, Kielian T (2013) Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J Neurochem 127:245–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Langmann.

Ethics declarations

Interessenkonflikt

V. Behnke und T. Langmann geben an, dass kein Interessenkonflikt besteht. Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Die präsentierten Daten sind eine Rekapitulation bereits vorher publizierter Daten. Die in diesem Artikel modifiziert enthaltenen Bilder unterliegen der jeweiligen Creative-Commons-Lizenz.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnke, V., Langmann, T. Neuroinflammation bei neuronalen Ceroid-Lipofuszinosen. Ophthalmologe 118, 98–105 (2021). https://doi.org/10.1007/s00347-020-01301-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01301-4

Schlüsselwörter

Keywords

Navigation