Skip to main content
Log in

Gender-Medizin in der Augenheilkunde

Der „kleine Unterschied“ zwischen Frauen und Männern

Gender medicine in ophthalmology

The “small difference” between women and men

  • CME
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die gender- oder geschlechtsspezifische Medizin ist Teil der „personalisierten“ Medizin. Nachdem seit den 1980er-Jahren zunächst auf dem Gebiet der Kardiologie Unterschiede bei Herzerkrankungen zwischen Frauen und Männern nachgewiesen und verstärkt publiziert wurden, sind auch in anderen Fachbereichen Unterschiede zwischen den Geschlechtern in den Fokus des Interesses gerückt. Immunologische und hormonelle Aspekte lassen auf deutliche Unterschiede z. B. in der Krankheitsausprägung oder der Reaktion auf Therapien schließen. In der Augenheilkunde selbst sind epidemiologische Unterschiede in einigen Erkrankungen bekannt, jedoch führen diese bislang nicht zu einer unterschiedlichen Herangehensweise in der praktischen Behandlung von Patienten. Dieser CME-Beitrag soll das Bewusstsein für die Gender-Medizin auch im Bereich der Augenheilkunde wecken und gleichzeitig auch durch Darstellung der grundlegenden Unterschiede bei den Geschlechtern das Verständnis für ebendiese Unterschiede fördern.

Abstract

Gender-specific or sex-specific medicine is part of “personalized” medicine. After differences in heart diseases between women and men were first identified and increasingly published in the field of cardiology since the 1980s, differences between the sexes have also become the focus of interest in other disciplines. Immunological and hormonal aspects indicate significant differences, e.g. in the severity of the disease or the response to treatment. Even in ophthalmology epidemiological differences in some diseases are known but so far these do not lead to a different approach in the practical treatment of patients. This CME article aims to raise awareness of gender medicine also in the field of ophthalmology and at the same time to promote understanding of these differences by presenting the fundamental differences between the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ludwig S, Dettmer S, Harm P et al (2016) Geschlechtsspezifische Medizin in der Lehre: Noch in den Kinderschuhen. Dtsch Arztebl 113:A-2364 / B‑1944 / C‑1920

    Google Scholar 

  2. Kollock CW (1888) Diseases and functional disorders of the eye, produced by normal and abnormal conditions of the sexual organs. Trans S C Med Assoc, S 97–102

  3. Cornell-Bell AH, Sullivan DA, Allansmith MR (1985) Gender-related differences in the morphology of the lacrimal gland. Invest Ophthalmol Vis Sci 26(8):1170–1175

    CAS  PubMed  Google Scholar 

  4. Chiamvimonvat V, Sternberg L (1998) Coronary artery disease in women. Can Fam Physician 44:2709–2717

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maynard C, Litwin PE, Martin JS et al (1992) Gender differences in the treatment and outcome of acute myocardial infarction. Results from the Myocardial Infarction Triage and Intervention Registry. Arch Intern Med 152(5):972–976

    CAS  PubMed  Google Scholar 

  6. Norberg H, Pranic V, Bergdahl E et al (2020) Differences in medical treatment and clinical characteristics between men and women with heart failure—a single-centre multivariable analysis. Eur J Clin Pharmacol 76(4):539–546. https://doi.org/10.1007/s00228-019-02782-2

    Article  CAS  PubMed  Google Scholar 

  7. Institute of Medicine (US) (2001) Committee on understanding the biology of sex and gender differences: exploring the biological contributions to human health: does sex matter? The National Academies Press, Washington, DC

    Google Scholar 

  8. Hoffman AJ, Given BA, von Eye A et al (2007) Relationships among pain, fatigue, insomnia, and gender in persons with lung cancer. Oncol Nurs Forum 34(4):785–792

    PubMed  Google Scholar 

  9. Potoupnis M, Kenanidis E, Anagnostis P et al (2020) Choosing the approach treatment strategy for osteoporosis in men. Expert Opin Pharmacother 17:1–3. https://doi.org/10.1080/14656566.2020.1743266

    Article  Google Scholar 

  10. WHO (2001) A/RES/55/69, February

  11. Tomlinson A, Phillips C (1970) Applanation tension and axial length of the eyeball. Br J Ophthalmol 54:548

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Acer N, Sahin B, Ucar T et al (2009) Unbiased estimation of the eyeball volume using the Cavalieri principle on computed tomography images. J Craniofac Surg 20:233–237

    PubMed  Google Scholar 

  13. Lee KE, Klein BEK, Klein R et al (2009) Association of age, stature, and education with ocular dimensions in an older white population. Arch Ophthalmol 127:88–93

    PubMed  PubMed Central  Google Scholar 

  14. Detorakis ET, Drakonaki E, Papadaki E et al (2010) Effective orbital volume and eyeball position: an MRI study. Orbit 29:244–249

    PubMed  Google Scholar 

  15. Özer CM, Öz II, Şerifoğlu I et al (2016) Evaluation of eyeball and orbit in relation to gender and Age. J Craniofac Surg 27(8):e793–e800. https://doi.org/10.1097/SCS.0000000000003133

    Article  PubMed  Google Scholar 

  16. Bekerman I, Gottlieb P, Vaiman M (2014) Variations in eyeball diameters of the healthy adults. J Ophthalmol 2014:1–5

    Google Scholar 

  17. Goto T, Klyce SD, Zheng X et al (2001) Gender- and age-related differences in corneal topography. Cornea 20:270–276

    CAS  PubMed  Google Scholar 

  18. Ananthi S, Santhosh RS, Nila MV et al (2011) Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res 92:454–463

    CAS  PubMed  Google Scholar 

  19. Song WK, Lee SC, Lee ES et al (2010) Macular thickness variations with sex, Age, and axial length in healthy subjects: a spectral domain–optical coherence Tomography study. Invest Ophthalmol Vis Sci 51:3913–3918. https://doi.org/10.1167/iovs.09-4189

    Article  PubMed  Google Scholar 

  20. Mauschitz MM, Holz FG, Finger RP et al (2019) Determinants of macular layers and optic disc characteristics on SD-OCT: The Rhineland Study. Trans Vis Sci Tech 8(3):34. https://doi.org/10.1167/tvst.8.3.34

    Article  Google Scholar 

  21. Ooto S, Hangai M, Tomidokoro A et al (2011) Effects of Age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci 52:8769–8779. https://doi.org/10.1167/iovs.11-8388

    Article  PubMed  Google Scholar 

  22. Maden G, Cakir A, Icar D et al (2017) The distribution of the photoreceptor outer segment length in a healthy population. J Ophthalmol 2017:4641902. https://doi.org/10.1155/2017/4641902

    Article  PubMed  PubMed Central  Google Scholar 

  23. Niestrata-Ortiz M, Fichna P, Stankiewicz W et al (2019) Sex-related variations of retinal and Choroidal thickness and foveal avascular zone in healthy and diabetic children assessed by optical coherence Tomography imaging. Ophthalmologica 241(3):173–178. https://doi.org/10.1159/000495622

    Article  PubMed  Google Scholar 

  24. Gómez-Ulla F, Cutrin P, Santos P et al (2019) Age and gender influence on foveal avascular zone in healthy eyes. Exp Eye Res. https://doi.org/10.1016/j.exer.2019.107856

    Article  PubMed  Google Scholar 

  25. Miyata M, Yoshikawa M, Ohtsuki H, Nagahama Study Group (2018) Age-related change and sex difference over 60s in disc-fovea angle in Japanese population: The Nagahama Study. Acta Ophthalmol 96(7):e840–e845. https://doi.org/10.1111/aos.13642

    Article  PubMed  Google Scholar 

  26. Poplin R, Varadarajan AV, Blumer K et al (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2(3):158–164. https://doi.org/10.1038/s41551-018-0195-0

    Article  PubMed  Google Scholar 

  27. Wickham LA, Gao J, Toda I et al (2000) Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand 78:146–153

    CAS  PubMed  Google Scholar 

  28. Ogueta S, Schwartz SD, Yamashita CK et al (1999) Estrogen receptor in the human eye: influence of gender and age on gene expression. Invest Ophthalmol Vis Sci 40:1906–1911

    CAS  PubMed  Google Scholar 

  29. Moss SE, Klein R, Klein BE (2000) Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol 118:1264

    CAS  PubMed  Google Scholar 

  30. Paulsen AJ, Cruickshanks KJ, Fischer ME et al (2014) Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am J Ophthalmol 157(4):799–806. https://doi.org/10.1016/j.ajo.2013.12.023

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schaumberg DA, Buring JE, Sullivan DA et al (2001) Hormone replacement therapy and dry eye syndrome. JAMA 286(17):2114–2119

    CAS  PubMed  Google Scholar 

  32. Schaumberg DA, Uchino M, Christen WG et al (2013) Patient reported differences in dry eye disease between men and women: impact, management, and patient satisfaction. Plos One 8:e76121

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Viso E, Rodriguez-Ares MT, Gude F (2009) Prevalence of and associated factors for dry eye in a Spanish adult population (the Salnes Eye Study). Ophthalmic Epidemiol 16:15

    PubMed  Google Scholar 

  34. Gagliano C, Caruso S, Napolitano G et al (2014) Low levels of 17-b-oestradiol, oestrone and testosterone correlate with severe evaporative dysfunctional tear syndrome in postmenopausal women: a case control study. Br J Ophthalmol 98:371

    PubMed  Google Scholar 

  35. Rahimi Darabad R, Suzuki T, Richards SM et al (2014) Does estrogen deficiency cause lacrimal gland inflammation and aqueous-deficient dry eye in mice? Exp Eye Res 127:153

    CAS  PubMed  Google Scholar 

  36. Nakamura T, Nishida K, Dota A et al (2001) Elevated expression of transglutaminase 1 and keratinization-related proteins in conjunctiva in severe ocular surface disease. Invest Ophthalmol Vis Sci 42:549

    CAS  PubMed  Google Scholar 

  37. Ghahfrokhi NA, Vaseghi A, Ghahfarokhi NA et al (2015) Evaluation of corneal alterations during menstrual cycle in productive age women. Indian J Ophthalmol 63:30–32

    Google Scholar 

  38. Klein BEK, Klein R, Linton KLP (1992) Prevalence of age-related lens opacities in a population. Ophthalmology 99:546–552

    CAS  PubMed  Google Scholar 

  39. Mitchell P, Cumming RG, Attebo K et al (1997) Prevalence of cataract in Australia: the Blue Mountains eye study. Ophthalmology 104:581–588

    CAS  PubMed  Google Scholar 

  40. Klein BE (1993) Lens opacities in women in Beaver Dam, Wisconsin: is there evidence of an effect of sex hormones? Trans Am Ophthalmol Soc 91:517–544

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Younan C, Mitchell P, Cumming RG et al (2002) Hormone replacement therapy, reproductive factors, and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Am J Epidemiol 155:997–1006

    PubMed  Google Scholar 

  42. Zetterberg M, Celojevic D (2015) Gender and cataract—the role of estrogen. Curr Eye Res 40:176–190

    CAS  PubMed  Google Scholar 

  43. Hulsman CAA, Westendorp ICD, Ramrattan RS et al (2001) Is open-angle glaucoma with early meno-pause? The Rotterdam study. Epidemiol Rev 154:138–144

    CAS  Google Scholar 

  44. Vajarannant TS, Grossardt MR, Maki PM et al (2014) The risk of glaucoma after bilateral oophorectomy. Menopause. https://doi.org/10.1097/gme.0b013e31829fd081

    Article  Google Scholar 

  45. Na KS, Jee DH, Han K et al (2014) The ocular benefits of estrogen replacement therapy: A population-based study in postmenopausal Korean women. Plos One 9:e106473

    PubMed  PubMed Central  Google Scholar 

  46. Vajaranant TS, Pasquale LR (2012) Estrogen deficiency accelerates ageing of the optic nerve. Menopause 19(8):942–947. https://doi.org/10.1097/gme.0b013e3182443137

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sator MO, Akramian J, Joura EA et al (1998) Reducing of intraocular pressure in a glaucoma patient undergoing hormone replacement therapy. Maturitas 29:93–95

    CAS  PubMed  Google Scholar 

  48. Bouman A, Heineman MJ, Faas MM (2005) Sex hormones and the immune response in humans. Hum Reprod Update 11(4):411–423

    CAS  PubMed  Google Scholar 

  49. Klein SL (2000) The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 24:627–638

    CAS  PubMed  Google Scholar 

  50. Buggage RR, Matteson DM, Shen DF et al (2003) Effect of sex hormones on experimental autoimmune uveoretinitis (EAU). Immunol Invest 32:259–273

    CAS  PubMed  Google Scholar 

  51. Miayamoto N, Mandai M, Suzuma I et al (1999) Estrogen protects against cellular infiltration by reducing the expressions of E‑selectin and IL‑6 in endotoxin-induced uveitis. J Immunol 163:374–379

    Google Scholar 

  52. Gritz DC, Wong IG (2004) Incidence and prevalence of uveitis in Northern California; The Northern California Epidemiology of Uveitis Study. Ophthalmology 111:491–500

    PubMed  Google Scholar 

  53. Costenbader KH, Feskanich D, Stampfer MJ et al (2007) Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis Rheum 56:1251–1262

    PubMed  Google Scholar 

  54. Rider V, Li X, Peterson G et al (2006) Differential expression of estrogen receptors in women with systemic lupus erythematosus. J Rheumatol 33:1093–1101

    CAS  PubMed  Google Scholar 

  55. Baughman RP, Teirstein AS, Judson MA et al (2001) Case Control Etiologic Study of Sarcoidosis (ACCESS) research group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 164:1885–1889

    CAS  PubMed  Google Scholar 

  56. Bergamaschi R (2007) Prognostic factors in multiple sclerosis. Int Rev Neurobiol 79:423–447

    PubMed  Google Scholar 

  57. Abu-Yaghi NE, Hartono SP, Hodge DO et al (2011) White dot syndromes: a 20-year study of incidence, clinical features, and outcomes. Ocul Immunol Inflamm 19:426–430

    PubMed  PubMed Central  Google Scholar 

  58. Wakefield D, Chang JH, Amjadi S et al (2011) What is new HLA-B27 acute anterior uveitis? Ocul Immunol Inflamm 19:139–144

    CAS  PubMed  Google Scholar 

  59. Marcocci C, Bartalena L, Bogazzi F et al (1989) Studies on the occurrence of ophthalmopathy in Graves’ disease. Acta Endocrinol 120(4):473–478

    CAS  Google Scholar 

  60. Magri F, Zerbini F, Gaiti M et al (2016) Gender influences the clinical presentation and long-term outcome of graves disease. Endocr Pract 22:1336–1342

    PubMed  Google Scholar 

  61. Schomburg L (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8:160–171

    PubMed  Google Scholar 

  62. Wang Y, Zhao F, Rijntjes E et al (2019) Role of selenium intake for risk and development of hyperthyroidism. J Clin Endocrinol Metab 104:568–580. https://doi.org/10.1210/jc.2018-01713

    Article  PubMed  Google Scholar 

  63. Mitry D, Tuft S, McLeod D et al (2010) Laterality and gender imbalances in retinal detachment. Graefes Arch Clin Exp Ophthalmol 249:1109–1110

    PubMed  Google Scholar 

  64. Mahroo OA, Mitry D, Williamson TH et al (2015) Exploring sex and Laterality imbalances in patients undergoing laser Retinopexy. JAMA Ophthalmol 133:1334–1336. https://doi.org/10.1001/jamaophthalmol.2015.2731

    Article  PubMed  Google Scholar 

  65. Wang J, McLeod D, Henson DB et al (2003) Age-dependent changes in the basal retinovitreous adhesion. Invest Ophthalmol Vis Sci 44:1793–1800

    PubMed  Google Scholar 

  66. Lin LL, Shih YF, Hsiao CK et al (2000) Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc 100:684–691

    Google Scholar 

  67. Chen ZTY, Wang IJ, Liao YT et al (2011) Poplymorphisms in steroidogenesis genes, sex steroid levels, and high myopia in the Taiwanese population. Mol Vis 17:2297–2310

    CAS  PubMed  PubMed Central  Google Scholar 

  68. The Eye Disease Case-Control Study Group (1994) Risk factors for idiopathic macular holes. Am J Ophthalmol 118(6):754–761

    Google Scholar 

  69. McCannel CA, Ensminger JL, Diehl NN et al (2009) Population based incidence of macular holes. Opthalmology 116:1366–1369

    Google Scholar 

  70. Qiu QH, Chen ZY, Yin LL et al (2012) Effects of estrogen on collagen gel contraction by human retinal glial cells. Chin Med J 125(22):4098–4103

    CAS  PubMed  Google Scholar 

  71. Inokuchi N, Ikeda T, Nakamura K et al (2015) Vitreous estrogen levels in patients with an idiopathic macular hole. Clin Ophthalmol 9:549–552. https://doi.org/10.2147/OPTH.S80754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gray RH, Gregor ZJ, Marsh M (1994) Oestrogens and macular holes: a postal questionnaire. Eye (lond) 8(Pt 3):368–369

    Google Scholar 

  73. Kajiwara A, Miyagawa H, Saruwatari J et al (2014) Gender differences in the incidence and progression of diabetic retinopathy among Japanese patients with type 2 diabetes mellitus: a clinic-based retrospective longitudinal study. Diabetes Res Clin Pract 103:e7–e10

    CAS  PubMed  Google Scholar 

  74. Schiefelbein J, Müller M, Kern C et al (2020) Gender-related differences in patients treated with intravitreal anti-vascular endothelial growth factor medication for diabetic macular oedema. Eur J Ophthalmol. https://doi.org/10.1177/1120672119899627

    Article  PubMed  Google Scholar 

  75. Kitzmann AS, Pulido JS, Diehl NN et al (2008) The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology 115:169–173

    PubMed  Google Scholar 

  76. Spaide RF, Campeas L, Haas A et al (1996) Central serous chorioretinopathy in younger and older adults. Ophthalmology 103:2070–2080. https://doi.org/10.1016/s0161-6420(96)30386-2

    Article  CAS  PubMed  Google Scholar 

  77. Hanumunthadu D, Van Dijk EHC, Gangakhedkar S et al (2018) Gender variation in central serous chorioretinopathy. Eye (lond) 32(11):1703–1709. https://doi.org/10.1038/s41433-018-0163-7

    Article  Google Scholar 

  78. Schellevis RL, Altay L, Kalisingh A et al (2019) Elevated steroid hormone levels in active chronic central serous Chorioretinopathy. Invest Ophthalmol Vis Sci 60(10):3407–3413. https://doi.org/10.1167/iovs.19-26781

    Article  CAS  PubMed  Google Scholar 

  79. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 99:933–943

    CAS  PubMed  Google Scholar 

  80. Mitchell P, Smith W, Attebo K et al (1995) Prevalence of age-related maculopathy in Australia: The Blue Mountains Eye Study. Ophthalmology 102:1450–1460

    CAS  PubMed  Google Scholar 

  81. Vingerling J, Dielemans I, Hofman A et al (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102:205–210

    CAS  PubMed  Google Scholar 

  82. Rudnicka AR, Jarrar Z, Wormald R et al (2012) Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: a meta-analysis. Ophthalmology 119(3):571–580. https://doi.org/10.1016/j.ophtha.2011.09.027

    Article  PubMed  Google Scholar 

  83. Winkler TW, Brandl C, Grassmann F et al (2018) International Age-related Macular Degeneration Genomics Consortium (IAMDGC). Investigating the modulation of genetic effects on late AMD by age and sex: Lessons learned and two additional loci. Plos One 13(3):e194321. https://doi.org/10.1371/journal.pone.0194321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kawasaki R, Yasuda M, Song SJ et al (2010) The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology 117:921–927. https://doi.org/10.1016/j.ophtha.2009.10.007

    Article  PubMed  Google Scholar 

  85. Kwon HJ, Lee SM, Pak KY et al (2017) Gender differences in the relationship between sex hormone deficiency and soft Drusen. Curr Eye Res 42(11):1527–1536. https://doi.org/10.1080/02713683.2017.1337155

    Article  CAS  PubMed  Google Scholar 

  86. Vingerling JR, Dielemans I, Witteman JC et al (1995) Macular degeneration and early menopause: a case-control study. BMJ 310(6994):1570–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Eye Disease Case-Control Study Group (1992) Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 110:1701–1708

    Google Scholar 

  88. Snow KK, Cote J, Yang W et al (2002) Association between reproductive and hormonal factors and age-related maculopathy in postmenopausal women. Am J Ophthalmol 134:842–848

    CAS  PubMed  Google Scholar 

  89. Smith W, Mitchell P, Wang JJ (1997) Gender, oestrogen, hormone replacement and age-related macular degeneration: results from the Blue Mountains Eye Study. Aust N Z J Ophthalmol 25(Suppl 1):S13–S15

    PubMed  Google Scholar 

  90. Edwards DR, Gallins P, Polk M et al (2010) Inverse association of female hormone replacement therapy with age-related macular degeneration and interactions with ARMS2 polymorphisms. Invest Ophthalmol Vis Sci 51(4):1873–1879. https://doi.org/10.1167/iovs.09-4000

    Article  PubMed  PubMed Central  Google Scholar 

  91. Haan MN, Klein R, Klein BE et al (2006) Hormone therapy and age-related macular degeneration: the Women’s Health Initiative Sight Exam Study. Arch Ophthalmol 124:988–992

    PubMed  Google Scholar 

  92. Cho B‑J, Heo JW, Shin JP et al (2014) Association between reproductive factors and Age-related macular degeneration in postmenopausal women: the Korea national health and nutrition examination survey 2010-2012. Plos One 9(7):e102816. https://doi.org/10.1371/journal.pone.0102816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schwarz EB, Ray RM, Stuebe AM et al (2009) Duration of lactation and risk factors for maternal cardiovascular disease. Obstet Gynecol 113:974–982

    PubMed  PubMed Central  Google Scholar 

  94. Connell PP, Keane PA, O’Neill EC et al (2009) Risk factors for age-related maculopathy. J Ophthalmol. https://doi.org/10.1155/2009/360764

    Article  PubMed  PubMed Central  Google Scholar 

  95. Grassmann F, Friedrich U, Fauser S et al (2015) A candidate gene association study identifies DAPL1 as a female-specific susceptibility locus for Age-related macular degeneration (AMD). Neuromol Med 17:111–120. https://doi.org/10.1007/s12017-015-8342-1

    Article  CAS  Google Scholar 

  96. Sasaki M, Harada S, Kawasaki Y et al (2018) Gender-specific association of early age-related macular degeneration with systemic and genetic factors in a Japanese population. Sci Rep 8:785. https://doi.org/10.1038/s41598-017-18487-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giordano L, Deceglie S, d’Adamo P et al (2015) Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxifiation pathways. Cell Death Dis 6:e2021. https://doi.org/10.1038/cddis.2015.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giordano C, Montopoli M, Perli E et al (2011) Oestrogens ameliorate mytochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 134:220–234

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Gamulescu.

Ethics declarations

Interessenkonflikt

Gemäß den Richtlinien des Springer Medizin Verlags werden Autoren und Wissenschaftliche Leitung im Rahmen der Manuskripterstellung und Manuskriptfreigabe aufgefordert, eine vollständige Erklärung zu ihren finanziellen und nichtfinanziellen Interessen abzugeben.

Autoren

M.‑A. Gamulescu: A. Finanzielle Interessen: M.‑A. Gamulescu gibt an, dass kein finanzieller Interessenkonflikt besteht. – B. Nichtfinanzielle Interessen: Angestellte Augenärztin im Beamtenstatus, Klinik und Poliklinik für Augenheilkunde, Klinikum der Universität Regensburg | Mitgliedschaften: DOG, RG.

Wissenschaftliche Leitung

Die vollständige Erklärung zum Interessenkonflikt der Wissenschaftlichen Leitung finden Sie am Kurs der zertifizierten Fortbildung auf www.springermedizin.de/cme.

Der Verlag

erklärt, dass für die Publikation dieser CME-Fortbildung keine Sponsorengelder an den Verlag fließen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Wissenschaftliche Leitung

F. Grehn, Würzburg

Unter ständiger Mitarbeit von:

H. Helbig, Regensburg

W.A. Lagrèze, Freiburg

U. Pleyer, Berlin

B. Seitz, Homburg/Saar

CME-Fragebogen

CME-Fragebogen

In den 1980er-Jahren fielen Kardiologen Unterschiede zwischen den Geschlechtern beim akuten Myokardinfarkt auf. Welche Symptome beklagten Frauen häufiger als Männer?

Stärkste Brustschmerzen, insbesondere linksseitig

Schweißausbrüche und Schüttelfrost

Unspezifische Symptome wie Müdigkeit und Magen-Darm-Beschwerden

Plötzliche pochende Schläfenkopfschmerzen

Ausstrahlung der Schmerzen in den linken Arm

In welcher Stadt wurde die erste Professur für Geschlechterforschung in Deutschland eingerichtet?

Berlin

Heidelberg

Bonn

Freiburg

Leipzig

Anatomisch sind männliche Augen in den meisten Strukturen größer als weibliche. Welche Struktur ist bei Frauen größer als bei Männern?

Kornea

Ziliarkörper

Papillendurchmesser

Foveale avaskuläre Zone

Netzhautdicke

Welche Geschlechtshormone sind für eine normale Funktion von Tränen- und Lidkantendrüsen besonders wichtig?

Gestagene

Östrogene

Katecholamine

Androgene

Somatostatin

Für welche Erkrankung des Auges scheint eine verlängerte Östrogenexposition im Laufe des Lebens protektiv zu sein?

Offenwinkelglaukom

Chorioretinopathia centralis serosa (CRCS)

Ablatio retinae

Autoimmunuveitis

Diabetische Retinopathie

Wie erklärt man sich die direkte drucksenkende Wirkung des Östrogens am Auge?

Verminderter Blutfluss im Gewebe

Östrogenrezeptoren im Ziliarkörperepithel

Verstärkte Produktion von Kammerwasser

Verminderter Abfluss des Kammerwassers

Abnahme der Hornhautdicke

Welche Uveitiden sind insbesondere mit dem weiblichen Geschlecht assoziiert?

Infektiöse Uveitiden

Autoimmunuveitiden

HLA-B27-positive Uveitiden

Granulomatöse Uveitiden

Virale Uveitiden

Was wird neben der größeren anterior-posterioren Achsenlänge des männlichen Auges noch als Grund für die höhere Inzidenz einer Ablatio retinae bei Männern angegeben?

Steilere Hornhautkurvatur

Dichtere und axial dickere Linse

Schnellere Glaskörperverflüssigung

Breitere und weiter posterior gelegene Glaskörperbasis

Dünnere Netzhaut und schmälere Glaskörperbasis

Bei der Chorioretinopathia centralis serosa (CRCS) haben Männer eine schlechtere Prognose, da bei ihnen vermehrt welche Merkmale in der Bildgebung zu finden sind?

Subretinale Ablagerungen und hyperreflektive Foci

Ausgedehnte intraretinale Flüssigkeit

Foveoläre Gefäßastverschlüsse

Ausdünnung der inneren Netzhautschichten

Punktuelle Leckagen in der Angiographie

In welcher Bevölkerungsgruppe ist die Inzidenz der AMD bei Männern höher als bei Frauen?

Kaukasier

Hispanier

Schwarzafrikaner

Asiaten

Inuit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamulescu, MA. Gender-Medizin in der Augenheilkunde. Ophthalmologe 117, 831–842 (2020). https://doi.org/10.1007/s00347-020-01174-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01174-7

Schlüsselwörter

Keywords

Navigation