Skip to main content

Lageabhängigkeit des Augeninnendruckes bei Glaukompatienten

Neue Ansätze zur Pathogenese und Therapie

Dependency of intraocular pressure on body posture in glaucoma patients

New approaches to pathogenesis and treatment

Zusammenfassung

Hintergrund

Der menschliche Augeninnendruck (intraokularer Druck [IOD]) ist abhängig von der Lage des Kopfes im Verhältnis zum Körper im Raum. Physiologisch steigt der IOD bei liegender Position im Vergleich zur aufrechten Körperhaltung an. Auch in der Schwerelosigkeit im Weltall scheint es zu einer Erhöhung des Augeninnendrucks zu kommen, begleitet von anderen ophthalmologischen Symptomen, die unter dem Krankheitsbegriff „Spaceflight Associated Neuro-Ocular Syndrome“ (SANS) zusammengefasst werden. Um die Auswirkungen des Einsatzes in der Schwerelosigkeit auf den menschlichen Körper zu untersuchen, werden sog. Bed-Rest-Studien durchgeführt. Hier besteht also eine Schnittmenge zwischen der Erforschung des SANS und der Glaukomerkrankung. Ein erhöhter Augeninnendruck ist weiterhin der wichtigste durch Therapie zu beeinflussende Risikofaktor für eine Glaukomentstehung und -progression. Der Einfluss von lageabhängiger IOD-Schwankungen auf die Glaukomerkrankung ist weiterhin nicht ausreichend verstanden.

Methoden

Es erfolgten die Durchführung einer Literaturrecherche via PubMed zum Thema „lageabhängige Augeninnendruckschwankungen“, eine Analyse und Einordnung der veröffentlichten Studienergebnisse sowie eine zusammenfassende Bewertung dieser.

Ergebnisse

Der Augeninnendruckanstieg beim Wechsel von sitzender zu liegender Körperposition ist bei Glaukompatienten mit bis zu 8,6 mm Hg stärker als bei gesunden Probanden mit bis zu 5 mm Hg. In kleinen Pilotstudien konnte eine Kopfhochlagerung um 30 % bei einem Teil der Glaukompatienten bzw. gesunden Probanden den IOD-Anstieg im Liegen abmildern. Ein erniedrigter Kompartimentdruck im Subarachnoidalraum wurde mit der Glaukomerkrankung assoziiert und kann einen Risikofaktor für die Glaukomentstehung darstellen. Nicht nur die Höhe des Augeninnendrucks, sondern auch IOD-Schwankungen wurden mit dem Risiko einer höheren Progressionswahrscheinlichkeit assoziiert.

Schlussfolgerung

Die klinische Bedeutung von nächtlichen IOD-Spitzen im Liegen für die Glaukomerkrankung ist weiterhin nicht ausreichend verstanden Neue Verfahren zur kontinuierlichen Augeninnendruckmessung bieten vielversprechende Möglichkeiten zur weiteren Erforschung der Bedeutung von lageabhängigen IOD-Schwankungen.

Abstract

Backround

Human intraocular pressure (IOP) depends on the position of the head in relation to the body in space. Physiologically, the IOP increases in a lying position compared to an upright posture. Microgravity in space also appears to cause an increase in intraocular pressure, accompanied by other ophthalmological changes, which are summarized under the term spaceflight associated neuro-ocular syndrome (SANS). Bed rest studies are being carried out to investigate the effects of weightlessness on the human body. So here there is an intersection between research into SANS and glaucoma. Increased intraocular pressure remains the most important risk factor for glaucoma development and progression that can be influenced by treatment. The influence of position-dependent IOP fluctuations on glaucoma is still not sufficiently understood.

Materials and methods

A literature search was carried in PubMed on the subject of IOP fluctuations related to posture. Analysis and evaluation of the published study results and a summary of available clinical data.

Results

The increase in IOP when changing from a seated to a lying body position is greater in glaucoma patients with an increase of up to 8.6 mm Hg compared to healthy subjects with an increase up to 5 mm Hg. In small pilot studies the increase in lying IOP in some glaucoma patients and healthy volunteers could be attenuated by elevation of the head by 30%. A lower compartmental pressure in the subarachnoid space has been associated with glaucoma and may represent a risk factor for glaucoma development. Not only the level of IOP but also IOP fluctuations were associated with an increased risk of disease progression.

Conclusion

The clinical significance of IOP peaks during sleep on glaucoma is still not sufficiently understood. New methods for continuous IOP measurement offer promising opportunities for further research into the importance of IOP fluctuations related to changes of body and head posture.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Prata TS, De Moraes CG, Kanadani FN, Ritch R, Paranhos A Jr. (2010) Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients. Surv Ophthalmol 55(5):445–453

    PubMed  Google Scholar 

  2. Taibbi G, Cromwell RL, Kapoor KG, Godley BF, Vizzeri G (2013) The effect of microgravity on ocular structures and visual function: a review. Surv Ophthalmol 58(2):155–163

    PubMed  Google Scholar 

  3. Laurie SS, Lee SMC, Macias BR et al (2019) Optic disc edema and Choroidal engorgement in astronauts during spaceflight and individuals exposed to bed rest. JAMA Ophthalmol 138(2):165–172. https://doi.org/10.1001/jamaophthalmol.2019.5261

    Article  PubMed Central  Google Scholar 

  4. Laurie SS, Macias BR, Dunn JT et al (2019) Optic disc edema after 30 days of strict head-down tilt bed rest. Ophthalmology 126(3):467–468

    PubMed  Google Scholar 

  5. Choritz L, Mansouri K, van den Bosch J et al (2020) Telemetric measurement of Intraocular pressure via an Implantable pressure sensor-12-month results from the ARGOS-02 trial. Am J Ophthalmol 209:187–196

    PubMed  Google Scholar 

  6. Enders P, Hall J, Bornhauser M et al (2019) Telemetric Intraocular pressure monitoring after boston Keratoprosthesis surgery using the Eyemate-IO sensor: dynamics in the first year. Am J Ophthalmol 206:256–263

    PubMed  Google Scholar 

  7. Mansouri K, Medeiros FA, Weinreb RN (2015) Effect of glaucoma medications on 24-hour intraocular pressure-related patterns using a contact lens sensor. Clin Experiment Ophthalmol 43(9):787–795

    PubMed  PubMed Central  Google Scholar 

  8. Liu JH, Mansouri K, Weinreb RN (2015) Estimation of 24-hour Intraocular pressure peak timing and variation using a contact lens sensor. PLoS ONE 10(6):e129529

    PubMed  PubMed Central  Google Scholar 

  9. Tatham AJ, Medeiros FA (2017) Detecting structural progression in glaucoma with optical coherence Tomography. Ophthalmology 124(12S):S57–S65

    PubMed  Google Scholar 

  10. Enders P, Adler W, Kiessling D et al (2019) Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 97(1):60–67

    PubMed  Google Scholar 

  11. European Glaucoma Society (2017) Terminology and guidelines for glaucoma, 4th edition – Chapter 2: Classification and terminologysupported by the EGS foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and terminology. Br J Ophthalmol 101(5):73–127

    Google Scholar 

  12. European Glaucoma Society (2017) Terminology and guidelines for glaucoma, 4th Edition – Chapter 3: Treatment principles and options Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options. Br J Ophthalmol 101(6):130–195

    Google Scholar 

  13. McMonnies CW (2017) The importance of and potential for continuous monitoring of intraocular pressure. Clin Exp Optom 100(3):203–207

    PubMed  Google Scholar 

  14. Kaplowitz K, Dredge J, Honkanen R (2019) Relationship between sleep position and glaucoma progression. Curr Opin Ophthalmol 30(6):484–490

    PubMed  Google Scholar 

  15. Anderson DR, Grant WM (1973) The influence of position on intraocular pressure. Invest Ophthalmol 12(3):204–212

    CAS  PubMed  Google Scholar 

  16. Krieglstein G, Langham ME (1975) Influence of body position on the intraocular pressure of normal and glaucomatous eyes. Ophthalmologica 171(2):132–145

    CAS  PubMed  Google Scholar 

  17. Wang NL, Hao J, Zhen Y et al (2016) A population-based investigation of circadian rhythm of Intraocular pressure in habitual position among healthy subjects: the Handan eye study. J Glaucoma 25(7):584–589

    PubMed  Google Scholar 

  18. Katsanos A, Dastiridou AI, Quaranta L et al (2017) The effect of posture on Intraocular pressure and systemic Hemodynamic parameters in treated and untreated patients with primary open-angle glaucoma. J Ocul Pharmacol Ther 33(8):598–603

    CAS  PubMed  Google Scholar 

  19. Sawada A, Yamamoto T (2012) Posture-induced intraocular pressure changes in eyes with open-angle glaucoma, primary angle closure with or without glaucoma medications, and control eyes. Invest Ophthalmol Vis Sci 53(12):7631–7635

    PubMed  Google Scholar 

  20. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107(7):1287–1293

    CAS  PubMed  Google Scholar 

  21. Flammer J (1994) The vascular concept of glaucoma. Surv Ophthalmol 38(Suppl):S3–S6

    PubMed  Google Scholar 

  22. Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT (2007) Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol 125(6):805–812

    PubMed  Google Scholar 

  23. Leske MC (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20(2):73–78

    PubMed  PubMed Central  Google Scholar 

  24. Pillunat KR, Spoerl E, Jasper C et al (2015) Nocturnal blood pressure in primary open-angle glaucoma. Acta Ophthalmol 93(8):e621–e626

    PubMed  Google Scholar 

  25. Quaranta L, Katsanos A, Russo A, Riva I (2013) 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol 58(1):26–41

    PubMed  Google Scholar 

  26. Joos KM, Kakaria SK, Lai KS, Shannon JR, Jordan J (1998) Intraocular pressure and baroreflex failure. Lancet 351(9117):1704

    CAS  PubMed  Google Scholar 

  27. Baneke AJ, Aubry J, Viswanathan AC, Plant GT (2020) The role of intracranial pressure in glaucoma and therapeutic implications. Eye (Lond) 34(1):178–191

    Google Scholar 

  28. Jonas JB, Ritch R, Panda-Jonas S (2015) Cerebrospinal fluid pressure in the pathogenesis of glaucoma. Prog Brain Res 221:33–47

    PubMed  Google Scholar 

  29. Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S (2015) Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res 46:67–83

    PubMed  Google Scholar 

  30. Ren R, Jonas JB, Tian G et al (2010) Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117(2):259–266

    PubMed  Google Scholar 

  31. Morgan WH, Balaratnasingam C, Lind CR et al (2016) Cerebrospinal fluid pressure and the eye. Br J Ophthalmol 100(1):71–77

    PubMed  Google Scholar 

  32. Mader TH, Gibson CR, Pass AF et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069

    PubMed  Google Scholar 

  33. Berdahl JP, Yu DY, Morgan WH (2012) The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Med Hypotheses 79(6):719–724

    PubMed  Google Scholar 

  34. Ren R, Wang N, Zhang X, Tian G, Jonas JB (2012) Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol 250(3):445–446

    PubMed  Google Scholar 

  35. Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB (2011) Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol 89(2):e142–e148

    PubMed  Google Scholar 

  36. Gallina P, Savastano A, Becattini E et al (2018) Glaucoma in patients with shunt-treated normal pressure hydrocephalus. J Neurosurg 129(4):1078–1084

    PubMed  Google Scholar 

  37. Mansouri K, Tanna AP, De Moraes CG, Camp AS, Weinreb RN (2019) Review of the measurement and management of 24-hour intraocular pressure in patients with glaucoma. Surv Ophthalmol 65(2):171–186. https://doi.org/10.1016/j.survophthal.2019.09.004

    Article  PubMed  Google Scholar 

  38. Schwartz B, Seddon JM (1981) Increased plasma cortisol levels in ocular hypertension. Arch Ophthalmol 99(10):1791–1794

    CAS  PubMed  Google Scholar 

  39. Weitzman ED, Henkind P, Leitman M, Hellman L (1975) Correlative 24-hour relationships between intraocular pressure and plasma cortisol in normal subjects and patients with glaucoma. Br J Ophthalmol 59(10):566–572

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Friberg TR, Sanborn G, Weinreb RN (1987) Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 103(4):523–526

    CAS  PubMed  Google Scholar 

  41. Jain MR, Marmion VJ (1976) Rapid pneumatic and Mackey-Marg applanation tonometry to evaluate the postural effect on intraocular pressure. Br J Ophthalmol 60(10):687–693

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Buys YM, Alasbali T, Jin YP et al (2010) Effect of sleeping in a head-up position on intraocular pressure in patients with glaucoma. Ophthalmology 117(7):1348–1351

    PubMed  Google Scholar 

  43. Yeon DY, Yoo C, Lee TE, Park JH, Kim YY (2014) Effects of head elevation on intraocular pressure in healthy subjects: raising bed head vs using multiple pillows. Eye (Lond) 28(11):1328–1333

    Google Scholar 

  44. Chung KY, Woo SJ, Yi S et al (2011) Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT). J Glaucoma 20(8):488–491

    PubMed  Google Scholar 

  45. Draeger J, Schwartz R, Groenhoff S, Stern C (1994) Self tonometry during the German 1993 Spacelab D2 mission. Ophthalmologe 91(5):697–699

    CAS  PubMed  Google Scholar 

  46. Mader TH, Gibson CR, Caputo M et al (1993) Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am J Ophthalmol 115(3):347–350

    CAS  PubMed  Google Scholar 

  47. Taibbi G, Cromwell RL, Zanello SB et al (2014) Ocular outcomes evaluation in a 14-day head-down bed rest study. Aviat Space Environ Med 85(10):983–992

    PubMed  PubMed Central  Google Scholar 

  48. The Advanced Glaucoma Intervention Study (AGIS) (2000) 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 130(4):429–440

    Google Scholar 

  49. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279

    PubMed  Google Scholar 

  50. Leidl MC, Choi CJ, Syed ZA, Melki SA (2014) Intraocular pressure fluctuation and glaucoma progression: what do we know? Br J Ophthalmol 98(10):1315–1319

    PubMed  Google Scholar 

  51. Matlach J, Bender S, Konig J, Binder H, Pfeiffer N, Hoffmann EM (2019) Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol 13:9–16

    PubMed  Google Scholar 

  52. Beltran-Agullo L, Buys YM, Jahan F et al (2017) Twenty-four hour intraocular pressure monitoring with the SENSIMED Triggerfish contact lens: effect of body posture during sleep. Br J Ophthalmol 101(10):1323–1328

    PubMed  Google Scholar 

  53. Mansouri K, Weinreb RN, Liu JH (2015) Efficacy of a contact lens sensor for monitoring 24‑h intraocular pressure related patterns. PLoS ONE 10(5):e125530

    PubMed  PubMed Central  Google Scholar 

  54. McMonnies CW (2016) Intraocular pressure and glaucoma: Is physical exercise beneficial or a risk? J Optom 9(3):139–147

    PubMed  PubMed Central  Google Scholar 

  55. Sawada A, Yamamoto T (2014) Comparison of posture-induced intraocular pressure changes in medically treated and surgically treated eyes with open-angle glaucoma. Invest Ophthalmol Vis Sci 55(1):446–450

    PubMed  Google Scholar 

  56. Chang PY, Wang JK, Weng HY, Chang SW (2019) Cataract surgery reduces intraocular pressure but not posture-induced intraocular pressure changes in patients with angle-closure glaucoma. Sci Rep 9(1):14116

    PubMed  PubMed Central  Google Scholar 

  57. Fraunfelder FW, Fraunfelder FT, Corbett JJ (2004) Isotretinoin-associated intracranial hypertension. Ophthalmology 111(6):1248–1250

    PubMed  Google Scholar 

  58. Han ME, Kim HJ, Lee YS et al (2009) Regulation of cerebrospinal fluid production by caffeine consumption. BMC Neurosci 10:110

    PubMed  PubMed Central  Google Scholar 

  59. Wostyn P, Van Dam D, De Deyn PP (2018) Intracranial pressure and glaucoma: Is there a new therapeutic perspective on the horizon? Med Hypotheses 118:98–102

    PubMed  Google Scholar 

Download references

Förderung

EU COST BM1302 „Joining Forces in Corneal Regeneration“ an CC (www.biocornea.eu); DFG FOR 2240 „(Lymph)Angiogenesis And Cellular Immunity In Inflammatory Diseases Of The Eye“ an CC (www.for2240.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Enders FEBO, FICO.

Ethics declarations

Interessenkonflikt

P. Enders, C. Stern, S. Schrittenlocher, A. Händel, J. Jordan, C. Cursiefen und T.S. Dietlein geben an, dass kein Interessenkonflikt besteht.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen wurden im Einklang mit nationalem Recht sowie der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Es handelt sich um eine retrospektive Auswertung klinischer Daten der Routinediagnostik. Eine Genehmigung des Studienprotokolls durch die lokale Ethikkommission war nicht erforderlich. Die Einhaltung der ärztlichen Schweigepflicht wurde durch Pseudonymisierung der Patientendaten gewährleistet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enders, P., Stern, C., Schrittenlocher, S. et al. Lageabhängigkeit des Augeninnendruckes bei Glaukompatienten. Ophthalmologe 117, 730–739 (2020). https://doi.org/10.1007/s00347-020-01113-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01113-6

Schlüsselwörter

  • Lageabhängige Druckschwankungen
  • Nächtliche Augeninnendruckspitzen
  • Translaminärer Druckgradient
  • Augeninnendruckmessung
  • Tages- und Nacht-IOD-Profil

Keywords

  • Posture-dependent pressure fluctuations
  • Nocturnal IOP peaks
  • Translaminar pressure gradient
  • Intraocular pressure measurement
  • Day and night IOP profile