Skip to main content
Log in

Künstliche Intelligenz zum Management von Makulaödemen

Chancen und Herausforderungen

Artificial intelligence in management of macular edema

Opportunities and challenges

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Makulaödeme treten bei einer Vielzahl von ophthalmologischen Krankheitsbildern auf. Ihre Diagnostik und Therapie sind wichtiger Teil der heutigen Augenheilkunde. Durch die stetige Weiterentwicklung bietet künstliche Intelligenz (KI) viele Chancen, das Management von Makulaödemen zu verbessern. Dieser Beitrag soll dem Leser einen Überblick über dieses interessante Thema geben.

Abstract

Macular edema occurs in a wide variety of ophthalmological diseases. The diagnostics and treatment are an important part of modern ophthalmology. Due to the continuous development, artificial intelligence (AI) offers many opportunities to improve the management of macular edema. This article provides the readership with an overview of this interesting topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abramoff MD, Lou Y, Erginay A et al (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57:5200–5206

    PubMed  Google Scholar 

  2. Akram MU, Tariq A, Khan SA et al (2014) Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Programs Biomed 114:141–152

    PubMed  Google Scholar 

  3. Alsaih K, Lemaitre G, Rastgoo M et al (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. BioMed Eng OnLine 16:68

    PubMed  PubMed Central  Google Scholar 

  4. Arcadu F, Benmansour F, Maunz A et al (2019) Deep learning predicts OCT measures of diabetic macular thickening from color fundus photographs. Invest Ophthalmol Vis Sci 60:852–857

    PubMed  Google Scholar 

  5. Bogunovic H, Waldstein S, Schlegl T et al (2017) Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci 58:3240–3248

    CAS  PubMed  Google Scholar 

  6. Breger A, Ehler M, Bogunovic H et al (2017) Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images. Eye 31:1212–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan G, Kamble R, Muller H et al (2018) Fusing results of several deep learning architectures for automatic classification of normal and diabetic macular edema in optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc 2018:670–673

    Google Scholar 

  8. Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(Suppl 6):S3–S9

    PubMed  Google Scholar 

  9. Fang L, Cunefare D, Wang C et al (2017) Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express 8:2732–2744

    PubMed  PubMed Central  Google Scholar 

  10. Fekrat S, Sadda S, Blodi B (2019) Exploring the role of reading centers in the era of artificial intelligence. Retin Times 36(3):52–56

    Google Scholar 

  11. Gerendas BS, Bogunovic H, Sadeghipour A et al (2017) Computational image analysis for prognosis determination in DME. Vision Res 139:204–210

    PubMed  Google Scholar 

  12. Haubold J (2020) Künstliche Intelligenz in der Radiologie: Was ist in den nächsten Jahren zu erwarten? Radiologe 60:64–69

    PubMed  Google Scholar 

  13. Hecht I, Bar A, Rokach L et al (2018) Optical coherence tomography biomarkers to distinguish diabetic MacUlar edema from pseudophakic cystoid MacUlar edema using MacHine learning algorithms. Retina 39:2283–2291

    Google Scholar 

  14. Hwang DK, Hsu CC, Chang KJ et al (2019) Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 9:232–245

    PubMed  PubMed Central  Google Scholar 

  15. Katzenmeier C (2019) Big Data, E‑Health, M‑Health, KI und Robotik in der Medizin. MedR 37:259–271

    Google Scholar 

  16. Lauermann JL, Woetzel AK, Treder M et al (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 256:1807–1816

    CAS  PubMed  Google Scholar 

  17. Lee CS, Tyring AJ, Deruyter NP et al (2017) Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express 8:3440–3448

    PubMed  PubMed Central  Google Scholar 

  18. Li F, Chen H, Liu Z et al (2019) Fully automated detection of retinal disorders by image-based deep learning. Graefes Arch Clin Exp Ophthalmol 257:495–505

    PubMed  Google Scholar 

  19. Liefers B, Venhuizen F, Schreur V et al (2017) Automatic detection of the foveal center in optical coherence tomography. Biomed Opt Express 8:5160–5178

    PubMed  PubMed Central  Google Scholar 

  20. Montuoro A, Waldstein SM, Gerendas BS et al (2017) Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomed Opt Express 8:1874–1888

    PubMed  PubMed Central  Google Scholar 

  21. Murugeswari S, Sukanesh R (2017) Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms. Ir J Med Sci 186:929–938

    CAS  PubMed  Google Scholar 

  22. Pham D, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    CAS  PubMed  Google Scholar 

  23. Prahs P, Radeck V, Mayer C et al (2018) OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefes Arch Clin Exp Ophthalmol 256:91–98

    PubMed  Google Scholar 

  24. Ren F, Cao P, Zhao D et al (2018) Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning. Technol Health Care 26:389–397

    PubMed  PubMed Central  Google Scholar 

  25. Rohm M, Tresp V, Müller M et al (2018) Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration. Ophthalmology 125:1028–1036

    PubMed  Google Scholar 

  26. Roy AG, Conjeti S, Karri SPK et al (2017) ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express 8:3627–3642

    PubMed  PubMed Central  Google Scholar 

  27. Schlegl T, Waldstein SM, Bogunovic H et al (2017) Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125:549–558

    PubMed  Google Scholar 

  28. Schmidt-Erfurth U, Bogunovic H, Sadeghipour A et al (2018) Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol Retin 2:24–30

    Google Scholar 

  29. Schmidt-Erfurth U, Sadeghipour A, Gerendas B et al (2018) Artificial intelligence in retina. Prog Retin Eye Res 67:1–29

    PubMed  Google Scholar 

  30. Schwartz R, Loewenstein A (2015) Early detection of age related macular degeneration: current status. Int J Retin Vitreous Dec 1:1–20

    Google Scholar 

  31. Soubrane G (2017) Macular edema of choroidal origin. Dev Ophthalmol 58:202–219

    PubMed  Google Scholar 

  32. Sun Y, Li S, Sun Z (2017) Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. J Biomed Opt 22:16012

    PubMed  Google Scholar 

  33. Treder M, Eter N (2018) „Deep Learning“ und neuronale Netzwerke in der Augenheilkunde. Ophthalmologe 115:714–721

    CAS  PubMed  Google Scholar 

  34. Treder M, Eter N (2019) Chancen von künstlicher Intelligenz und Big Data für die Diagnostik und Behandlung der altersabhängigen Makuladegeneration. Klin Monbl Augenheilkd 236:1418–1422

    PubMed  Google Scholar 

  35. Treder M, Lauermann JL, Eter N (2018) Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol 256:259–265

    CAS  PubMed  Google Scholar 

  36. U.S: Food & Drug Administration. www.fda.gov/newsevents/newsroom/pressannouncements/ucm604357.htm. Zugegriffen: 15. Febr. 2020

  37. Van Der Heijden AA, Abramoff MD, Verbraak F et al (2018) Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn diabetes care system. Acta Ophthalmol 96:63–68

    Google Scholar 

  38. Venhuizen FG, Van Ginneken B, Liefers B et al (2017) Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed Opt Express 8:3292–3316

    PubMed  PubMed Central  Google Scholar 

  39. Vogl W, Waldstein S, Gerendas B et al (2017) Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal mixed effects model of imaging and clinical data. Invest Ophthalmol Vis Sci 58:4173–4181

    PubMed  Google Scholar 

  40. Vogl W, Waldstein S, Gerendas B et al (2017) Predicting macular edema recurrence from spatio-temporal signatures in optical coherence tomography images. IEEE Trans Med Imaging 36:1773–1783

    PubMed  Google Scholar 

  41. Wang Y, Zhang Y, Yao Z et al (2016) Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images. Biomed Opt Express 7:4928–4940

    PubMed  PubMed Central  Google Scholar 

  42. Zou X, Zhao X, Yang Y et al (2016) Learning-Based Visual Saliency Model for Detecting Diabetic Macular Edema in Retinal Image. Comput Intell Neurosci 2016:7496735

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Treder.

Ethics declarations

Interessenkonflikt

M. Treder, R. Diener und N. Eter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treder, M., Diener, R. & Eter, N. Künstliche Intelligenz zum Management von Makulaödemen. Ophthalmologe 117, 989–992 (2020). https://doi.org/10.1007/s00347-020-01110-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01110-9

Schlüsselwörter

Keywords

Navigation