Zusammenfassung
Das auditive System setzt sich aus dem in der Peripherie gelegenen Ohr, in dem eine Umwandlung des Schalls in ein elektrisches Signal stattfindet, und Neuronen, die anhand von Aktionspotenzialen eine zentrale Verarbeitung durchführen, zusammen. Die wichtigsten anatomischen und funktionellen Merkmale des auditiven Systems werden erläutert. Dazu fand eine selektive Literaturrecherche in den Datenbanken PubMed (auch in der Europe PubMed Central), Psychline, Google Scholar, Cochrane Library und Web of Science statt, und zusätzliche Angaben einschlägiger Werke bzw. Websites auf den Gebieten (Neuro‑)Anatomie, (Neuro‑)Physiologie und (Neuro‑)Otologie, u. a. mit den Suchbegriffen Hörbahn, „auditory system“, „auditory pathway“, „receptors“, „spatial hearing“, „auditory cognition“ wurden mit einbezogen.
Abstract
The auditory system consists of the ear located in the periphery, in which a conversion of the sound into an electrical signal takes place, and neurons, which perform central processing based on action potentials. The most important anatomical and functional features of the auditory system are explained. For this purpose, a selective literature search was carried out in the databases PubMed (also in the Europe PubMed Central), Psychline, Google Scholar, Cochrane Library and Web of Science. Additional information was obtained from relevant books or websites in the fields of (neuro)anatomy, (neuro)physiology, (neuro)ophthalmology and (neuro)otology, among others with the keywords Hörbahn, auditory system, auditory pathway, receptors, spatial hearing and auditory cognition.
This is a preview of subscription content, access via your institution.

Literatur
- 1.
Ackermann H, Hertrich I, Ziegler W (1993) Prosodische Störungen bei neurologischen Erkrankungen – eine Literaturübersicht. Fortschr Neurol Psychiatr 61:241–253. https://doi.org/10.1055/s-2007-999092
- 2.
Alvord LS, Farmer BL (1997) Anatomy and orientation of the human external ear. J Am Acad Audiol 8:383–390
- 3.
Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347. https://doi.org/10.1113/jphysiol.1987.sp016617
- 4.
Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond B Biol Sci 168:158–180
- 5.
von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York
- 6.
Belin P, Zatorre RJ (2000) „What“, „where“ and „how“ in auditory cortex. Nat Neurosci 3:965–966. https://doi.org/10.1038/79890
- 7.
Biedron S, Westhofen M, Ilgner J (2009) On the number of turns in human cochleae. Otol Neurotol 30:414–417. https://doi.org/10.1097/MAO.0b013e3181977b8d
- 8.
Bizley JK, Cohen YE (2013) The what, where and how of auditory-object perception. Nat Rev Neurosci 14:693–707. https://doi.org/10.1038/nrn3565
- 9.
Bosher SK, Warren RL (1968) Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc R Soc Lond B Biol Sci 171:227–247
- 10.
Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3. Aufl. Oxford University Press, New York
- 11.
Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196
- 12.
Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133:2839–2855. https://doi.org/10.1121/1.4795778
- 13.
Budinger E, Kanold PO (2018) Auditory cortex circuits. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways. Spinger, Cham, S 199–233
- 14.
Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585
- 15.
Donaldson J, Miller J (1973) Anatomy of the ear. Saunders, Philadelphia
- 16.
Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. https://doi.org/10.1146/annurev.neuro.27.070203.144152
- 17.
Edeline J‑M (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224. https://doi.org/10.1016/S0301-0082(98)00042-2
- 18.
Ehret G, Romand R (1997) The central auditory system. Oxford University Press, New York, Oxford
- 19.
Engstrom H, Wersall J (1958) The ultrastructural organization of the organ of Corti and of the vestibular sensory epithelia. Exp Cell Res 14:460–492
- 20.
Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c‑fos Immunocytochemistry. Eur J Neurosci 4:798–812
- 21.
Gelfand S (1981) Hearing. Elsevier, Amsterdam
- 22.
Glendenning KK, Brusno-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral leminscus. J Comp Neurol 197:673–703. https://doi.org/10.1002/cne.901970409
- 23.
Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154. https://doi.org/10.1038/nn796
- 24.
Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31:639–656. https://doi.org/10.1152/jn.1968.31.4.639
- 25.
Guinan JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex: II: locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166. https://doi.org/10.3109/00207457209164756
- 26.
Hebrank J, Wright D (1974) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56:1829–1834
- 27.
Heimer L (1983) Auditory system. In: Heimer L (Hrsg) The human brain and spinal cord: functional neuroanatomy and dissection guide. Springer, New York, S 261–270
- 28.
Hubel DH, Wiesel TN (1977) Ferrier lecture—functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59. https://doi.org/10.1098/rspb.1977.0085
- 29.
Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the Cat. Annu Rev Neurosci 6:95–120. https://doi.org/10.1146/annurev.ne.06.030183.000523
- 30.
Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Quart Rev Biophys 5:1–57. https://doi.org/10.1017/S0033583500000032
- 31.
Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9:164–170. https://doi.org/10.1016/S0959-4388(99)80022-1
- 32.
Kaltenbach JA, Lazor J (1991) Tonotopic maps obtained from the surface of the dorsal cochlear nucleus of the hamster and rat. Hear Res 51:149–160. https://doi.org/10.1016/0378-5955(91)90013-Y
- 33.
Konishi M (1993) Listening with two ears. Sci Am 268:66–73
- 34.
Kopp-Scheinpflug C, Forsythe ID (2018) Integration of synaptic and intrinsic conductances shapes microcircuits in the superior olivary complex. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways: synaptic organization and microcircuits. Springer, Cham, S 101–126
- 35.
Kuo RI, Wu GK (2012) The generation of direction selectivity in the auditory system. Neuron 73:1016–1027. https://doi.org/10.1016/j.neuron.2011.11.035
- 36.
LeDoux JE, Iwata J, Pearl D, Reis DJ (1986) Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res 371:395–399
- 37.
LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698
- 38.
Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83–89
- 39.
Malmierca M, Hackett TA (2012) Structural organization of the ascending auditory pathway. In: Rees A, Palmer Alan R (Hrsg), Moore DA (Chief Editor) The Oxford handbook of auditory science: auditory brain, Oxford University Press, Oxford, S 9–41>
- 40.
Malmierca M, Merchán M (2004) Auditory pathway. In: Patxinos G (Hrsg) The rat nervous system. Elsevier, Amsterdam u.a., S 997–1082. https://doi.org/10.1016/B978-0-12-547638-6.X5000-7
- 41.
Malmierca MS (2006) The inferior colliculus: a center for convergence of ascending and descending auditory information. Neuroembryology Aging 3:215–229. https://doi.org/10.1159/000096799
- 42.
McIntosh AR, Gonzalez-Lima F (1995) Functional network interactions between parallel auditory pathways during Pavlovian conditioned inhibition. Brain Res 683:228–241
- 43.
Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249. https://doi.org/10.1152/jn.1975.38.2.231
- 44.
Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
- 45.
Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459. https://doi.org/10.1002/cne.903350312
- 46.
Nadol JB (1983) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. I. Inner hair cells. Laryngoscope 93:599–614
- 47.
Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110. https://doi.org/10.1016/j.tins.2003.12.001
- 48.
Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424
- 49.
Pillsbury HC (1996) Lorente de No’s „Anatomy of the eighth nerve. I. The central projection of the nerve endings of the internal ear; III. General plan of structure of the primary cochlear nuclei.“. Laryngoscope 106:533–534 (Laryngoscope. 1933;43:1–38, 327–350)
- 50.
Pollak GD, Casseday JH (1989) Tonotopic organization. In: Pollak GD, Casseday JH (Hrsg) The neural basis of echolocation in bats. Zoophysiology, Bd 25. Springer, Berlin Heidelberg, S 25–39
- 51.
Rubio M (2018) Microcircuits of the ventral cochlear nucleus. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways. Springer, Cham, S 41–71
- 52.
Saint Marie RL, Luo L, Ryan AF (1999) Effects of stimulus frequency and intensity on c‑fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404:258–270
- 53.
Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386. https://doi.org/10.1038/41106
- 54.
Speckmann EJ, Hescheler J, Köhling R (2019) Physiologie, 7. Aufl. Elsevier GmbH, Urban & Fischer, München
- 55.
Spitzer M (2002) Musik im Kopf. Hören, Musizieren, Verstehen und Erleben im neuronalen Netzwerk. Schattauer, Stuttgart
- 56.
Spoendlin H (2009) Innervation densities of the cochlea. Acat Oto-laryngologica 73:235–248
- 57.
Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43:231–246
- 58.
Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19–42. https://doi.org/10.3389/neuro.01.1.1.002.2007
- 59.
Trussell LO, Oertel D (2018) Microcircuits of the dorsal cochlear nucleus. In: Oliver D, Cant N, Fay R, Popper A (Hrsg) The mammalian auditory pathways. Springer handbook of auditory research, Bd 65. Springer, Cham, S 73–99
- 60.
Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40:296–318. https://doi.org/10.1152/jn.1977.40.2.296
- 61.
Walzl EM (1947) Representation of the cochlea in the cerebral cortex. Laryngoscope 57:778–787. https://doi.org/10.1288/00005537-194712000-00003
- 62.
Wernicke C (1974) Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. Springer, Berlin Heidelberg
- 63.
Wright A (1981) Scanning electron microscopy of the human cochlea—the organ of Corti. Arch Otorhinolaryngol 230:11–19
- 64.
Yin TC (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay R (Hrsg) Integrative functions in the mammalian auditory pathway. Springer, New York, S 99–159
- 65.
Zatorre RJ, Penhune VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21:6321–6328
- 66.
Zwislocki J, Feldman RS (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28:860–864. https://doi.org/10.1121/1.1908495
Danksagung
Die Autoren danken Frau Irena Stingl für die Unterstützung bei der Erarbeitung der Grafiken.
Author information
Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
U. Schiefer ist als Consultant für die Fa. Haag-Streit, Köniz, Schweiz, tätig. I. Milenkovic, R. Ebenhoch und J. Ungewiss geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Rights and permissions
About this article
Cite this article
Milenkovic, I., Schiefer, U., Ebenhoch, R. et al. Aufbau und Funktion der Hörbahn. Ophthalmologe 117, 1068–1073 (2020). https://doi.org/10.1007/s00347-020-01070-0
Published:
Issue Date:
Schlüsselwörter
- Auditives System
- Neuroanatomie
- Neurophysiologie
- Otologie
- Signalverarbeitung
Keywords
- Auditory system
- Neuroanatomy
- Neurophysiology
- Otology
- Action potential