Aufbau und Funktion der Hörbahn

Anatomy and physiology of the auditory pathway

Zusammenfassung

Das auditive System setzt sich aus dem in der Peripherie gelegenen Ohr, in dem eine Umwandlung des Schalls in ein elektrisches Signal stattfindet, und Neuronen, die anhand von Aktionspotenzialen eine zentrale Verarbeitung durchführen, zusammen. Die wichtigsten anatomischen und funktionellen Merkmale des auditiven Systems werden erläutert. Dazu fand eine selektive Literaturrecherche in den Datenbanken PubMed (auch in der Europe PubMed Central), Psychline, Google Scholar, Cochrane Library und Web of Science statt, und zusätzliche Angaben einschlägiger Werke bzw. Websites auf den Gebieten (Neuro‑)Anatomie, (Neuro‑)Physiologie und (Neuro‑)Otologie, u. a. mit den Suchbegriffen Hörbahn, „auditory system“, „auditory pathway“, „receptors“, „spatial hearing“, „auditory cognition“ wurden mit einbezogen.

Abstract

The auditory system consists of the ear located in the periphery, in which a conversion of the sound into an electrical signal takes place, and neurons, which perform central processing based on action potentials. The most important anatomical and functional features of the auditory system are explained. For this purpose, a selective literature search was carried out in the databases PubMed (also in the Europe PubMed Central), Psychline, Google Scholar, Cochrane Library and Web of Science. Additional information was obtained from relevant books or websites in the fields of (neuro)anatomy, (neuro)physiology, (neuro)ophthalmology and (neuro)otology, among others with the keywords Hörbahn, auditory system, auditory pathway, receptors, spatial hearing and auditory cognition.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Ackermann H, Hertrich I, Ziegler W (1993) Prosodische Störungen bei neurologischen Erkrankungen – eine Literaturübersicht. Fortschr Neurol Psychiatr 61:241–253. https://doi.org/10.1055/s-2007-999092

    CAS  Article  Google Scholar 

  2. 2.

    Alvord LS, Farmer BL (1997) Anatomy and orientation of the human external ear. J Am Acad Audiol 8:383–390

    CAS  Google Scholar 

  3. 3.

    Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347. https://doi.org/10.1113/jphysiol.1987.sp016617

    CAS  Article  Google Scholar 

  4. 4.

    Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond B Biol Sci 168:158–180

    CAS  Article  Google Scholar 

  5. 5.

    von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  6. 6.

    Belin P, Zatorre RJ (2000) „What“, „where“ and „how“ in auditory cortex. Nat Neurosci 3:965–966. https://doi.org/10.1038/79890

    CAS  Article  Google Scholar 

  7. 7.

    Biedron S, Westhofen M, Ilgner J (2009) On the number of turns in human cochleae. Otol Neurotol 30:414–417. https://doi.org/10.1097/MAO.0b013e3181977b8d

    Article  Google Scholar 

  8. 8.

    Bizley JK, Cohen YE (2013) The what, where and how of auditory-object perception. Nat Rev Neurosci 14:693–707. https://doi.org/10.1038/nrn3565

    CAS  Article  Google Scholar 

  9. 9.

    Bosher SK, Warren RL (1968) Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc R Soc Lond B Biol Sci 171:227–247

    CAS  Article  Google Scholar 

  10. 10.

    Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3. Aufl. Oxford University Press, New York

    Google Scholar 

  11. 11.

    Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    CAS  Article  Google Scholar 

  12. 12.

    Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133:2839–2855. https://doi.org/10.1121/1.4795778

    Article  Google Scholar 

  13. 13.

    Budinger E, Kanold PO (2018) Auditory cortex circuits. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways. Spinger, Cham, S 199–233

    Google Scholar 

  14. 14.

    Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585

    CAS  Article  Google Scholar 

  15. 15.

    Donaldson J, Miller J (1973) Anatomy of the ear. Saunders, Philadelphia

    Google Scholar 

  16. 16.

    Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451. https://doi.org/10.1146/annurev.neuro.27.070203.144152

    CAS  Article  Google Scholar 

  17. 17.

    Edeline J‑M (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 57:165–224. https://doi.org/10.1016/S0301-0082(98)00042-2

    CAS  Article  Google Scholar 

  18. 18.

    Ehret G, Romand R (1997) The central auditory system. Oxford University Press, New York, Oxford

    Google Scholar 

  19. 19.

    Engstrom H, Wersall J (1958) The ultrastructural organization of the organ of Corti and of the vestibular sensory epithelia. Exp Cell Res 14:460–492

    CAS  Article  Google Scholar 

  20. 20.

    Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c‑fos Immunocytochemistry. Eur J Neurosci 4:798–812

    Article  Google Scholar 

  21. 21.

    Gelfand S (1981) Hearing. Elsevier, Amsterdam

    Google Scholar 

  22. 22.

    Glendenning KK, Brusno-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral leminscus. J Comp Neurol 197:673–703. https://doi.org/10.1002/cne.901970409

    CAS  Article  Google Scholar 

  23. 23.

    Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154. https://doi.org/10.1038/nn796

    CAS  Article  Google Scholar 

  24. 24.

    Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31:639–656. https://doi.org/10.1152/jn.1968.31.4.639

    CAS  Article  Google Scholar 

  25. 25.

    Guinan JJ, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex: II: locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166. https://doi.org/10.3109/00207457209164756

    Article  Google Scholar 

  26. 26.

    Hebrank J, Wright D (1974) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56:1829–1834

    CAS  Article  Google Scholar 

  27. 27.

    Heimer L (1983) Auditory system. In: Heimer L (Hrsg) The human brain and spinal cord: functional neuroanatomy and dissection guide. Springer, New York, S 261–270

    Google Scholar 

  28. 28.

    Hubel DH, Wiesel TN (1977) Ferrier lecture—functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59. https://doi.org/10.1098/rspb.1977.0085

    CAS  Article  Google Scholar 

  29. 29.

    Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the Cat. Annu Rev Neurosci 6:95–120. https://doi.org/10.1146/annurev.ne.06.030183.000523

    CAS  Article  Google Scholar 

  30. 30.

    Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Quart Rev Biophys 5:1–57. https://doi.org/10.1017/S0033583500000032

    CAS  Article  Google Scholar 

  31. 31.

    Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9:164–170. https://doi.org/10.1016/S0959-4388(99)80022-1

    CAS  Article  Google Scholar 

  32. 32.

    Kaltenbach JA, Lazor J (1991) Tonotopic maps obtained from the surface of the dorsal cochlear nucleus of the hamster and rat. Hear Res 51:149–160. https://doi.org/10.1016/0378-5955(91)90013-Y

    CAS  Article  Google Scholar 

  33. 33.

    Konishi M (1993) Listening with two ears. Sci Am 268:66–73

    CAS  Article  Google Scholar 

  34. 34.

    Kopp-Scheinpflug C, Forsythe ID (2018) Integration of synaptic and intrinsic conductances shapes microcircuits in the superior olivary complex. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways: synaptic organization and microcircuits. Springer, Cham, S 101–126

    Google Scholar 

  35. 35.

    Kuo RI, Wu GK (2012) The generation of direction selectivity in the auditory system. Neuron 73:1016–1027. https://doi.org/10.1016/j.neuron.2011.11.035

    CAS  Article  Google Scholar 

  36. 36.

    LeDoux JE, Iwata J, Pearl D, Reis DJ (1986) Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res 371:395–399

    CAS  Article  Google Scholar 

  37. 37.

    LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698

    CAS  Article  Google Scholar 

  38. 38.

    Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83–89

    Article  Google Scholar 

  39. 39.

    Malmierca M, Hackett TA (2012) Structural organization of the ascending auditory pathway. In: Rees A, Palmer Alan R (Hrsg), Moore DA (Chief Editor) The Oxford handbook of auditory science: auditory brain, Oxford University Press, Oxford, S 9–41>

    Google Scholar 

  40. 40.

    Malmierca M, Merchán M (2004) Auditory pathway. In: Patxinos G (Hrsg) The rat nervous system. Elsevier, Amsterdam u.a., S 997–1082. https://doi.org/10.1016/B978-0-12-547638-6.X5000-7

  41. 41.

    Malmierca MS (2006) The inferior colliculus: a center for convergence of ascending and descending auditory information. Neuroembryology Aging 3:215–229. https://doi.org/10.1159/000096799

    Article  Google Scholar 

  42. 42.

    McIntosh AR, Gonzalez-Lima F (1995) Functional network interactions between parallel auditory pathways during Pavlovian conditioned inhibition. Brain Res 683:228–241

    CAS  Article  Google Scholar 

  43. 43.

    Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249. https://doi.org/10.1152/jn.1975.38.2.231

    CAS  Article  Google Scholar 

  44. 44.

    Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031

    CAS  Article  Google Scholar 

  45. 45.

    Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459. https://doi.org/10.1002/cne.903350312

    CAS  Article  Google Scholar 

  46. 46.

    Nadol JB (1983) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. I. Inner hair cells. Laryngoscope 93:599–614

    Article  Google Scholar 

  47. 47.

    Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110. https://doi.org/10.1016/j.tins.2003.12.001

    CAS  Article  Google Scholar 

  48. 48.

    Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424

    CAS  Article  Google Scholar 

  49. 49.

    Pillsbury HC (1996) Lorente de No’s „Anatomy of the eighth nerve. I. The central projection of the nerve endings of the internal ear; III. General plan of structure of the primary cochlear nuclei.“. Laryngoscope 106:533–534 (Laryngoscope. 1933;43:1–38, 327–350)

    Article  Google Scholar 

  50. 50.

    Pollak GD, Casseday JH (1989) Tonotopic organization. In: Pollak GD, Casseday JH (Hrsg) The neural basis of echolocation in bats. Zoophysiology, Bd 25. Springer, Berlin Heidelberg, S 25–39

  51. 51.

    Rubio M (2018) Microcircuits of the ventral cochlear nucleus. In: Oliver DL, Cant NB, Fay RR, Popper AN (Hrsg) The mammalian auditory pathways. Springer, Cham, S 41–71

    Google Scholar 

  52. 52.

    Saint Marie RL, Luo L, Ryan AF (1999) Effects of stimulus frequency and intensity on c‑fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404:258–270

    CAS  Article  Google Scholar 

  53. 53.

    Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386. https://doi.org/10.1038/41106

    CAS  Article  Google Scholar 

  54. 54.

    Speckmann EJ, Hescheler J, Köhling R (2019) Physiologie, 7. Aufl. Elsevier GmbH, Urban & Fischer, München

    Google Scholar 

  55. 55.

    Spitzer M (2002) Musik im Kopf. Hören, Musizieren, Verstehen und Erleben im neuronalen Netzwerk. Schattauer, Stuttgart

    Google Scholar 

  56. 56.

    Spoendlin H (2009) Innervation densities of the cochlea. Acat Oto-laryngologica 73:235–248

    Article  Google Scholar 

  57. 57.

    Tervaniemi M, Hugdahl K (2003) Lateralization of auditory-cortex functions. Brain Res Brain Res Rev 43:231–246

    Article  Google Scholar 

  58. 58.

    Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19–42. https://doi.org/10.3389/neuro.01.1.1.002.2007

    CAS  Article  Google Scholar 

  59. 59.

    Trussell LO, Oertel D (2018) Microcircuits of the dorsal cochlear nucleus. In: Oliver D, Cant N, Fay R, Popper A (Hrsg) The mammalian auditory pathways. Springer handbook of auditory research, Bd 65. Springer, Cham, S 73–99

    Google Scholar 

  60. 60.

    Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40:296–318. https://doi.org/10.1152/jn.1977.40.2.296

    CAS  Article  Google Scholar 

  61. 61.

    Walzl EM (1947) Representation of the cochlea in the cerebral cortex. Laryngoscope 57:778–787. https://doi.org/10.1288/00005537-194712000-00003

    CAS  Article  Google Scholar 

  62. 62.

    Wernicke C (1974) Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. Springer, Berlin Heidelberg

    Google Scholar 

  63. 63.

    Wright A (1981) Scanning electron microscopy of the human cochlea—the organ of Corti. Arch Otorhinolaryngol 230:11–19

    CAS  Article  Google Scholar 

  64. 64.

    Yin TC (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay R (Hrsg) Integrative functions in the mammalian auditory pathway. Springer, New York, S 99–159

    Google Scholar 

  65. 65.

    Zatorre RJ, Penhune VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21:6321–6328

    CAS  Article  Google Scholar 

  66. 66.

    Zwislocki J, Feldman RS (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28:860–864. https://doi.org/10.1121/1.1908495

    Article  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Irena Stingl für die Unterstützung bei der Erarbeitung der Grafiken.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Ivan Milenkovic.

Ethics declarations

Interessenkonflikt

U. Schiefer ist als Consultant für die Fa. Haag-Streit, Köniz, Schweiz, tätig. I. Milenkovic, R. Ebenhoch und J. Ungewiss geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milenkovic, I., Schiefer, U., Ebenhoch, R. et al. Aufbau und Funktion der Hörbahn. Ophthalmologe 117, 1068–1073 (2020). https://doi.org/10.1007/s00347-020-01070-0

Download citation

Schlüsselwörter

  • Auditives System
  • Neuroanatomie
  • Neurophysiologie
  • Otologie
  • Signalverarbeitung

Keywords

  • Auditory system
  • Neuroanatomy
  • Neurophysiology
  • Otology
  • Action potential