Skip to main content
Log in

Aktueller Stellenwert der Femtosekundenlaser-assistierten Kataraktchirurgie

Current value of femtosecond laser-assisted cataract surgery

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

An Erratum to this article was published on 23 April 2020

This article has been updated

Zusammenfassung

Nach einer über 10-jährigen Erfahrung mit dem Femtosekundenlaser in der Kataraktchirurgie können wir feststellen, dass das Sicherheitsprofil einer Femtosekundenlaser-assistierten Kataraktchirurgie (FLACS) mit der einer konventionellen Kataraktchirurgie vergleichbar ist. Diese Technik bietet die Möglichkeit, basierend auf der Anbindung von prä- oder intraoperativer Diagnostik, die Schnittführung mit einer Präzision durchzuführen, die jedem Operateur der Welt überlegen ist. Dadurch resultieren neue Möglichkeiten, das chirurgische Verfahren der Kataraktchirurgie zu revolutionieren und neue Therapieansätze zur Behandlung des grauen Stars zu generieren. Die Kombination aus Astigmatismus-korrigierenden Keratotomien, kapsulotomiegestützten Intraokularlinsen und einer individuell angepassten Kernfragmentierung sind schon jetzt Bestandteile einer personalisierten Kataraktchirurgie.

Abstract

After more than 10 years of experience with the femtosecond laser in cataract surgery, it can be concluded that the safety profile of femtosecond laser-assisted cataract surgery (FLACS) is comparable to that of conventional cataract surgery. This technique offers the possibility to perform incisions with a precision superior to that of any surgeon in the world, based on the connection of preoperative and intraoperative diagnostics. This results in new possibilities to revolutionize the surgical procedure of cataract surgery and to generate new therapeutic approaches for the treatment of cataracts. The combination of keratotomy for correcting astigmatism, intraocular lenses supported by capsulotomy and individually adapted fragmentation patterns is already a component of a personalized cataract surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Change history

  • 23 April 2020

    In dem ursprünglich veröffentlichten Artikel wurde versehentlich der Interessenkonflikt falsch angegeben. Die Online-Version wurde nachträglich korrigiert.

    Wir bitten, den aktualisierten Interessenkonflikt zu beachten und den Fehler zu …

Literatur

  1. Krasnov MM (1975) Laser-phakopuncture in the treatment of soft cataracts. Br J Ophthalmol. https://doi.org/10.1136/bjo.59.2.96

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nagy Z, Takacs A, Filkorn T, Sarayba M (2009) Initial clinical evaluation of an Intraocular femtosecond laser in cataract surgery. J Refract Surg. https://doi.org/10.3928/1081597X-20091117-04

    Article  PubMed  Google Scholar 

  3. Dick HB, Schultz T (2013) Femtosecond laser-assisted cataract surgery in infants. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2013.02.032

    Article  PubMed  Google Scholar 

  4. Dick HB, Schelenz D, Schultz T (2015) Femtosecond laser-assisted pediatric cataract surgery: Bochum formula. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2014.08.032

    Article  PubMed  Google Scholar 

  5. Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB (2013) Femtosecond laser-assisted cataract surgery in eyes with a small pupil. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2013.05.034

    Article  PubMed  Google Scholar 

  6. Nanavaty MA, Bedi KK, Vasquez-Perez A (2018) Small-pupil cataract surgery with/without hooks using femtosecond laser with fluid interface. Can J Ophthalmol. https://doi.org/10.1016/j.jcjo.2017.08.020

    Article  PubMed  Google Scholar 

  7. Jun JH, Hwang KY, Chang SD, Joo CK (2015) Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2014.10.027

    Article  PubMed  Google Scholar 

  8. Jun JH, Bang SP, Yoo YS, Joo CK (2018) Efficacy of 0.015 % intracameral epinephrine for significant miosis induced by photodisruption during femtosecond laser-assisted cataract surgery. Medicine. https://doi.org/10.1097/MD.0000000000011693

    Article  PubMed  PubMed Central  Google Scholar 

  9. Popiela MZ, Young-Zvandasara T, Nidamanuri P, Moore T, Leccisotti A, Kumar V (2019) Factors influencing pupil behaviour during femtosecond laser assisted cataract surgery. Contact Lens Anterior Eye. https://doi.org/10.1016/j.clae.2018.10.010

    Article  PubMed  Google Scholar 

  10. Jun JH, Yoo YS, Lim SA, Joo CK (2017) Effects of topical ketorolac tromethamine 0.45 % on intraoperative miosis and prostaglandin E2 release during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2017.01.011

    Article  PubMed  Google Scholar 

  11. Mirshahi A, Ponto AK (2019) Changes in pupil area during low-energy femtosecond laser assisted cataract surgery. J Ophthalmic Vis Res. https://doi.org/10.18502/jovr.v14i3.4780

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malyugin B, Anisimova N, Antonova O, Arbisser LB (2018) Simultaneous pupil expansion and displacement for femtosecond laser-assisted cataract surgery in patients with lens ectopia. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2018.01.014

    Article  PubMed  Google Scholar 

  13. Teshigawara T, Meguro A, Sanjo S, Hata S, Mizuki N (2019) The advantages of femtosecond laser-assisted cataract surgery for zonulopathy. Int Med Case Rep J. https://doi.org/10.2147/IMCRJ.S189367

    Article  PubMed  PubMed Central  Google Scholar 

  14. Conrad-Hengerer I, Hengerer FH, Schultz T, Dick HB (2012) Effect of femtosecond laser fragmentation on effective phacoemulsification time in cataract surgery. J Refract Surg. https://doi.org/10.3928/1081597X-20121116-02

    Article  PubMed  Google Scholar 

  15. Taravella MJ, Meghpara B, Frank G, Gensheimer W, Davidson R (2016) Femtosecond laser-assisted cataract surgery in complex cases. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2016.08.033

    Article  PubMed  Google Scholar 

  16. Ibarz M, Hernández-Verdejo JL, Bolívar G, Tañá P, Rodríguez-Prats JL, Teus MA (2015) Porcine model to evaluate real-time Intraocular pressure during femtosecond laser cataract surgery. Curr Eye Res. https://doi.org/10.3109/02713683.2015.1023459

    Article  PubMed  Google Scholar 

  17. De Giacinto C, D’Aloisio R, Bova A, Candian T, Perrotta AA, Tognetto D (2019) Intraocular pressure changes during femtosecond laser-assisted cataract surgery: a comparison between two different patient interfaces. J Ophthalmol. https://doi.org/10.1155/2019/5986895

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schultz T, Dick HB (2014) Suction loss during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2013.12.004

    Article  PubMed  Google Scholar 

  19. Ebner M, Mariacher S, Januschowski K, Boden K, Seuthe AM, Szurman P et al (2017) Comparison of intraocular pressure during the application of a liquid patient interface (FEMTO LDV Z8) for femtosecond laser-assisted cataract surgery using two different vacuum levels. Br J Ophthalmol 101(8):1138–1142

    Article  PubMed  Google Scholar 

  20. Uy HS, Shah S, Packer M (2017) Comparison of wound sealability between femtosecond laser-constructed and manual clear corneal incisions in patients undergoing cataract surgery: a pilot study. J Refract Surg. https://doi.org/10.3928/1081597X-20170921-01

    Article  PubMed  Google Scholar 

  21. Wang X, Zhang Z, Li X, Xie L, Zhang H, Koch DD et al (2018) Evaluation of femtosecond laser versus manual clear corneal incisions in cataract surgery using spectral-domain optical coherence tomography. J Refract Surg. https://doi.org/10.3928/1081597X-20171109-01

    Article  PubMed  Google Scholar 

  22. Chang JSM (2018) Femtosecond laser-assisted astigmatic keratotomy: a review. Eye Vis. https://doi.org/10.1186/s40662-018-0099-9

    Article  Google Scholar 

  23. Byun YS, Kim S, Lazo MZ, Choi MH, Kang MJ, Lee JH et al (2018) Astigmatic correction by intrastromal astigmatic keratotomy during femtosecond laser-assisted cataract surgery: factors in outcomes. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2017.11.018

    Article  PubMed  Google Scholar 

  24. Day AC, Lau NM, Stevens JD (2016) Nonpenetrating femtosecond laser intrastromal astigmatic keratotomy in eyes having cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2015.07.045

    Article  PubMed  Google Scholar 

  25. Chan TCY, Ng ALK, Cheng GPM, Wang Z, Woo VCP, Jhanji V (2016) Corneal astigmatism and aberrations after combined femtosecond-assisted phacoemulsification and arcuate keratotomy: two-year results. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2016.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carifi G, Miller MH, Pitsas C, Zygoura V, Deshmukh RR, Kopsachilis N et al (2015) Complications and outcomes of phacoemulsification cataract surgery complicated by anterior capsule tear. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2014.11.027

    Article  PubMed  Google Scholar 

  27. Zhu Y, Chen X, Chen P, Xu W, Shentu X, Yu Y et al (2019) Lens capsule-related complications of femtosecond laser-assisted capsulotomy versus manual capsulorhexis for white cataracts. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2018.10.037

    Article  PubMed  Google Scholar 

  28. Abell RG, Darian-Smith E, Kan JB, Allen PL, Ewe SYP, Vote BJ (2015) Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: outcomes and safety in more than 4000 cases at a single center. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2014.06.025

    Article  PubMed  Google Scholar 

  29. Schultz T, Joachim SC, Noristani R, Scott W, Dick HB (2017) Greater vertical spot spacing to improve femtosecond laser capsulotomy quality. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2016.12.028

    Article  PubMed  Google Scholar 

  30. Hengerer FH, Mittelbronn M, Hansmann ML, Auffarth GU, Conrad-Hengerer I (2017) Femtosecond laser-assisted capsulotomy: histological comparison of four different laser platforms. J Refract Surg. https://doi.org/10.3928/1081597X-20170718-01

    Article  PubMed  Google Scholar 

  31. Teuma EV, Gray G, Bedi R, Packer M (2019) Femtosecond laser-assisted capsulotomy with capsular marks for toric IOL alignment: comparison of tensile strength with standard femtosecond laser capsulotomy. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2019.03.021

    Article  PubMed  Google Scholar 

  32. Dick HB, Schultz T (2014) Intraocular lens fixated in the anterior capsulotomy created in the line of sight by a femtosecond laser. J Refract Surg. https://doi.org/10.3928/1081597X-20140217-06

    Article  PubMed  Google Scholar 

  33. Schultz T, Tsiampalis N, Dick HB (2017) Laser-Assisted capsulotomy centration: a prospective trial comparing pupil versus OCT-based scanned capsule centration. J Refract Surg. https://doi.org/10.3928/1081597X-20161219-01

    Article  PubMed  Google Scholar 

  34. Dick HB, Conrad-Hengerer I, Schultz T (2014) Intraindividual capsular bag shrinkage comparing standard and laser-assisted cataract surgery. J Refract Surg. https://doi.org/10.3928/1081597X-20140320-01

    Article  PubMed  Google Scholar 

  35. Cinar E, Yuce B, Aslan F, Erbakan G, Küçükerdönmez C (2019) Intraocular lens tilt and decentration after Nd:YAG laser posterior capsulotomy: femtosecond laser capsulorhexis versus manual capsulorhexis. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2019.07.017

    Article  PubMed  Google Scholar 

  36. Schojai M, Schultz T, Haeussler-Sinangin Y, Boecker J, Dick HB (2017) Safety of femtosecond laser-assisted primary posterior capsulotomy immediately after cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2017.06.041

    Article  PubMed  Google Scholar 

  37. Menapace R (2019) Transzonular capsulo-hyaloidal hydroseparation with optional triamcinolone enhancement: a technique to detect or induce anterior hyaloid membrane detachment for primary posterior laser capsulotomy. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2019.03.008

    Article  PubMed  Google Scholar 

  38. Day AC, Gore DM, Bunce C, Evans JR (2016) Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010735.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schultz T, Dick HB (2014) Laser-assisted mini-capsulotomy: a new technique for intumescent white cataracts. J Refract Surg. https://doi.org/10.3928/1081597X-20141021-05

    Article  PubMed  Google Scholar 

  40. Shajari M, Khalil S, Mayer WJ, Al-Khateeb G, Böhm M, Petermann K et al (2017) Comparison of 2 laser fragmentation patterns used in femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2017.09.027

    Article  PubMed  Google Scholar 

  41. Kaur M, Titiyal JS, Surve A, Falera R, Verma M (2018) Effect of lens fragmentation patterns on phacoemulsification parameters and postoperative inflammation in femtosecond laser-assisted cataract surgery. Curr Eye Res. https://doi.org/10.1080/02713683.2018.1485951

    Article  PubMed  Google Scholar 

  42. Vasquez-Perez A, Simpson A, Nanavaty MA (2018) Femtosecond laser-assisted cataract surgery in a public teaching hospital setting. BMC Ophthalmol. https://doi.org/10.1186/s12886-018-0693-6

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krarup T, Holm ML, La Cour M, Kjaerbo H (2014) Endothelial cell loss and refractive predictability in femtosecond laser-assisted cataract surgery compared with conventional cataract surgery. Acta Ophthalmol. https://doi.org/10.1111/aos.12406

    Article  PubMed  Google Scholar 

  44. Vasavada VA, Vasavada S, Vasavada AR, Vasavada V, Srivastava S (2019) Comparative evaluation of femtosecond laser-assisted cataract surgery and conventional phacoemulsification in eyes with a shallow anterior chamber. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2018.11.037

    Article  PubMed  Google Scholar 

  45. Fan W, Yan H, Zhang G (2018) Femtosecond laser-assisted cataract surgery in Fuchs endothelial corneal dystrophy: long-term outcomes. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2018.05.007

    Article  PubMed  Google Scholar 

  46. Bascaran L, Alberdi T, Martinez-Soroa I, Sarasqueta C, Mendicute J (2018) Differences in energy and corneal endothelium between femtosecond laser-assisted and conventional cataract surgeries: prospective, intraindividual, randomized controlled trial. Int J Ophthalmol. https://doi.org/10.18240/ijo.2018.08.10

    Article  PubMed  PubMed Central  Google Scholar 

  47. Takács ÁI, Kovács I, Miháltz K, Filkorn T, Knorz MC, Nagy ZZ (2012) Central corneal volume and endothelial cell count following femtosecond laser-assisted refractive cataract surgery compared to conventional phacoemulsification. J Refract Surg. https://doi.org/10.3928/1081597X-20120508-02

    Article  PubMed  Google Scholar 

  48. Dzhaber D, Mustafa O, Alsaleh F, Mihailovic A, Daoud YJ (2019) Comparison of changes in corneal endothelial cell density and central corneal thickness between conventional and femtosecond laser-assisted cataract surgery: a randomised, controlled clinical trial. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-313723

    Article  PubMed  Google Scholar 

  49. Li S, Chen X, Zhao J, Xu M, Yu Z (2019) Isolated Capsulorhexis flap technique in femtosecond laser-assisted cataract surgery to protect the corneal Endothelial cells. J Invest Surg. https://doi.org/10.1080/08941939.2017.1372537

    Article  PubMed  Google Scholar 

  50. Ewe SYP, Oakley CL, Abell RG, Allen PL, Vote BJ (2015) Cystoid macular edema after femtosecond laser-assisted versus phacoemulsification cataract surgery. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2015.04.031

    Article  PubMed  Google Scholar 

  51. Nithianandan H, Jegatheeswaran V, Dalal V, Arshinoff SA, Maini R, Nazemi F et al (2019) Refractive laser-assisted cataract surgery versus conventional manual surgery: comparing efficacy and safety in 3144 eyes. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2019.04.010

    Article  PubMed  Google Scholar 

  52. Conrad-Hengerer I, Hengerer FH, Al Juburi M, Schultz T, Dick HB (2014) Femtosecond laser-induced macular changes and anterior segment inflammation in cataract surgery. J Refract Surg. https://doi.org/10.3928/1081597X-20140321-01

    Article  PubMed  Google Scholar 

  53. de Queiroz Alves B, Ferreira Moura Brasil O, Toesca Espinhosa C, Japiassu MR, Batista Gonçalves M, Magalhaes Júnior O et al (2018) Combined femtosecond laser-assisted cataract surgery and small-gauge pars plana vitrectomy using different devices: a new trend for vitreoretinal surgery? Ophthalmic Surg Lasers Imaging Retina. https://doi.org/10.3928/23258160-20180501-13

    Article  PubMed  Google Scholar 

  54. Schröder S, Langenbucher A (2018) Relationship between effective lens position and axial position of a thick intraocular lens. PLoS ONE. https://doi.org/10.1371/journal.pone.0198824

    Article  PubMed  PubMed Central  Google Scholar 

  55. Preussner PR, Wahl J, Weitzel D, Berthold S, Kriechbaum K, Findl O (2004) Predicting postoperative intraocular lens position and refraction. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2004.07.004

    Article  PubMed  Google Scholar 

  56. Li S, Hu Y, Guo R, Shao Y, Zhao J, Zhang J et al (2019) The effects of different shapes of capsulorrhexis on postoperative refractive outcomes and the effective position of the intraocular lens in cataract surgery. BMC Ophthalmol. https://doi.org/10.1186/s12886-019-1068-3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Toto L, Mastropasqua R, Mattei PA, Agnifili L, Mastropasqua A, Falconio G et al (2015) Postoperative IOL axial movements and refractive changes after femtosecond laser-assisted cataract surgery versus conventional phacoemulsification. J Refract Surg. https://doi.org/10.3928/1081597X-20150727-02

    Article  PubMed  Google Scholar 

  58. Rohrschneider K, Spittler AR, Bach M (2019) Comparison of visual acuity measurement with Landolt rings versus numbers. Ophthalmologe. https://doi.org/10.1007/s00347-019-0879-1

    Article  PubMed  Google Scholar 

  59. Reiniger JL, Lobecke AC, Sabesan R, Bach M, Verbakel F, de Brabander J et al (2019) Habitual higher order aberrations affect Landolt but not Vernier acuity. J Vis. https://doi.org/10.1167/19.5.11

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wesemann W, Schiefer U, Bach M (2010) New DIN norms for determination of visual acuity. Ophthalmologe. https://doi.org/10.1007/s00347-019-0943-x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Thomas Boden.

Ethics declarations

Interessenkonflikt

K. Boden ist Referent für die Firma Ziemer Deutschland GmbH. P. Szurman gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Originalversion dieses Beitrags wurde korrigiert: In dem ursprünglich veröffentlichten Artikel wurde versehentlich der Interessenkonflikt falsch angegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boden, K., Szurman, P. Aktueller Stellenwert der Femtosekundenlaser-assistierten Kataraktchirurgie. Ophthalmologe 117, 405–414 (2020). https://doi.org/10.1007/s00347-020-01065-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-020-01065-x

Schlüsselwörter

Keywords

Navigation